首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The kinetics of OsO4-catalysed oxidation of cyclopentanol, cyclohexanol and cyclooctanol by alkaline hexacyanoferrate(III) have been studied at low [OH] so that the equilibrium between alcohol and alkoxide ion is not unduly shifted towards the latter. The reaction shows a first-order dependence in [OH]. The order of the reaction with respect to cycloalcohol is fractional, indicating the formation of an intermediate complex with OsVIII since the order with respect to hexacyanoferrate(III) ion is zero. The order with respect to OsVIII may be expressed by the equation kobs=a+b[OsVIII]. The analysis of the rate data indicates a significant degree of complex formation between [OsO3(OH)3] and ROH. It was found that the bimolecular rate constant k for the redox reaction between complex and OHk1, the forward rate constant for the formation of alkoxide ion. The activation parameters of these rate constants are reported.  相似文献   

2.
The kinetics of the oxidation of PhCHO by OsVIII has been studied in 0.01–0.05 M [OH] range. Fe(CN)3– 6 was used to regenerate OsVIII. The very low solubility of PhCHO in H2O restricted the study to the 0.0024–0.0036 M [PhCHO] range. A mechanism involving the PhCHO hydrate has been proposed.  相似文献   

3.
Summary The oxidation of formate ion by alkaline osmium tetroxide, such that [HCO inf2 p– ] [OsVII], exhibits first-order dependence in [OsVII], an order less than unity in [HCO inf2 p– ], and zero-order in [OH]. HCO2– reacts as an ion-pair formed with an alkali metal ion and [OsO4(OH)2]2– is the reactive species of OsVII. The formation of an intermediate OsVII-HCO2M complex is substantiated by the rapid-scan spectra of the reaction mixture. Anions (Cl, ClO inf4 p– ) have no effect on the rate. The close agreement between the observed k H/k D = 7.1 and the theoretically calculated value (7.0), based on the stretching frequencies of C-H and C-D bonds in the free molecule, indicates an outer-sphere mechanism.Author to whom all correspondence should be directed.  相似文献   

4.
OsVIII-catalysed oxidation of m-hydroxybenzaldehyde by alkaline Fe(CN)6 3– has been studied in the 0.01–0.05 M [OH] range. Higher [OH] concentrations were not possible as the substrate turned yellow at [OH] > 0.05 M. The very low solubility of the substrate in H2O restricted the kinetic study to [OH] < 0.01 M. A mechanism, consistent with the results is proposed.  相似文献   

5.
The oxidation of HgI by CeIV has been studied in aqueous H2SO4. A minute amount (10–6 mol dm–3) of OsVIII is sufficient to catalyse the reaction. The active catalyst, substrate and oxidant species are H2OsO5, [Hg2(SO4)HSO4] and H3Ce(SO4) 4, respectively. Possible mechanisms are proposed and the reaction constants involved have been determined.  相似文献   

6.
The kinetics of oxidation of 1,4-thioxane (1,4-oxathiane) by alkaline K3Fe(CN)6 have been studied in the presence of OsVIII as catalyst. The reaction is first order in hexacyanoferrate(III) and OsVIII. The order in thioxane and OH is zero. While added salts and ethanol have a negligible effect on the oxidation rate, K4Fe(CN)6 retards it. On the basis of kinetic evidence, a mechanism has been proposed.  相似文献   

7.
Summary The kinetics of oxidation of TeIV by CoIII have been studied in aqueous HClO4. A mechanism presuming [Co(OH2)5(OH)]2+ to be the reactive species has been proposed, which leads to the rate-equation shown. Rate=–d[CoIII]/dt=2kKK h 2 [CoIII] t 2 [TeIV]/[H+]2 Kb is the hydrolysis constant of CoIII, K is the formation constant of the complex between CoIII and TeIV and k is the rate of decomposition of that complex. Ea and S are 95.0±2.1 kJ mol–1 and 28.3±7.1 JK–1 mol–1, respectively.  相似文献   

8.
The kinetics of the electron transfer from cycloheptanone to OsO4 in alkaline medium has been studied spectrophotometrically. The oxidation of cycloheptanone by OsVIII, continuously regenerated by Fe(CN)3– 6 in alkaline medium in the 0.00123–0.01 M range, is zeroth order with respect to Fe(CN)3– 6 and first order with respect to OsVIII. A suitable mechanism, based on rate data analysis, is proposed.  相似文献   

9.
Summary The oxidation ofi-propanol (IPA) by N-bromosuccinimide (NBS) in basic solution was investigated separately in the presence of RuIII, OsVIII and RuIII + OsVIII ions. The order in [IPA] was found to be 0.7, 0.5 and 0.3 respectively in the above three cases in the concentration range studied. The order in [NBS] was unity in the presence of RuIII chloride but was found to be zero in the case of OsVIII and RuIII+OsVIII catalysis. The order in [metalion] was found to be nearly unity in all the three catalysed reactions. Increase in [OH] increased the rate of reaction while addition of succinimide retarded the rate of reaction. Decrease in dielectric constantsof the medium decreased the rate of oxidation. The pseudo first order rate constants (k), zero order rate constants (k0) and the formation constants (kf) of the substrate-catalyst complexes and the thermodynamic parameters have been evaluated. Suitable mechanisms in conformity with the experimental observations have been proposed for the three catalysed reactions.  相似文献   

10.
The oxidation of AsIII by OsVIII or OsVI in aqueous H2SO4 follows the rate law:
  相似文献   

11.
Summary The kinetics of the reaction between nitrous acid and gold(III) in an HCl medium was studied. The reaction was first order with respect to [AuIII] and [HNO2]·H+ and Cl- ions inhibit the rate and alkali metal ions have specific effects on the rate. The reaction appears to involve different gold(III) species, viz. AuCl inf4 sup– , AuCl3(OH2) and AuCl3(OH), which undergo a two-equivalent reduction to gold(I) leading to the formation of NO inf2 sup&#x002B; which under-goes rapid hydrolysis to give nitric acid.  相似文献   

12.
Summary Uncatalysed and OsVIII-catalysed oxidation of dimethyl sulphoxide (DMSO) by potassium ferrate [FeVI] has been studied in alkaline medium in the 9.8–11.9 pH range, in the presence of IO 4 as a stabilizing agent. The order in [FeVI] and [DMSO] was found to be unity for the uncatalysed reaction and zero and fractional respectively for the catalysed reaction. The [OsVIII] order was unity in the catalysed reaction. The rate of oxidation decreased with increase in pH and the order in [H+] was fractional for the uncatalysed oxidation. However in the catalysed oxidation, the rate at first decreased and then increased with increase in pH. The effect of changing [IO 4 ] and [buffer] on the oxidation rate was negligible in both cases. Suitable mechanisms consistent with the observed kinetics have been proposed.  相似文献   

13.
Although pentamethylene sulfide (tetrahydrothiopyran) lacks acidic hydrogen, OsVIII has been found to catalyze its oxidation by alkaline K3Fe(CN)6 to produce 3-hydroxypentamethylene sulfide as the only product. The kinetics reveal first-order dependence on ferricyanide and OsVIII, and zero order on pentamethylene sulfide and OH. The effects of introduced electrolytes, K4Fe(CN)6, relative permittivity and temperature have also been studied. On the basis of kinetic evidence, a mechanism that involves anation of the osmium catalyst (sulfide/water interchange) followed by intramolecular proton abstraction, followed by an electron transfer step has been proposed and discussed.  相似文献   

14.
Summary The kinetics and mechanism of the system: [FeL(OH)]2–n + 5 CN [Fe(CN)5(OH)]3– + Ln–, where L=DTPA or HEDTA, have been investigated at pH= 10.5±0.2, I=0.25 M and t=25±0.1 C.As in the reaction of [FeEDTA(OH)]2–, the formation of [Fe(CN)5(OH)]3– through the formation of mixed ligand complex intermediates of the type [FeL(OH)(CN)x]2–n–x, is proposed. The reactions were found to consist of three observable stages. The first involves the formation of [Fe(CN)5(OH)]3–, the second is the conversion of [Fe(CN)5(OH)]3– into [Fe(CN)6]3– and the third is the reduction of [Fe(CN)6]3– to [Fe(CN)6]4– by oxidation of Ln– The first reaction exhibits a variable order dependence on the concentration of cyanide, ranging from one at high cyanide concentration to three at low concentration. The transition between [FeL(OH)]2–n and [Fe(CN)5(OH)]3– is kinetically controlled by the presence of four cyanide ions around the central iron atom in the rate determining step. The second reaction shows first order dependence on the concentration of [Fe(CN)5(OH)]3– as well as on cyanide, while the third reaction follows overall second order kinetics; first order each in [Fe(CN)6]3– and Ln–, released in the reaction. The reaction rate is highly dependent on hydroxide ion concentration.The reverse reaction between [Fe(CN)5(OH)]3– and Ln– showed an inverse first order dependence on cyanide concentration along with first order dependence each on [Fe(CN)5– (OH)]3– and Ln–. A five step mechanism is proposed for the first stage of the above two systems.  相似文献   

15.
Summary The kinetics and mechanism of the system [FeHIDA-(OH)2]+5CN[Fe(CN)5OH+HIDA2–+OH (HIDA=N-(2-hydroxyethyl) (iminodiacetate) at pH=9.5±0.02, I=0.1 M and at 25±0.1°C have been studied spectrophotometrically at 395 nm ( max of [Fe(CN)5OH]3–]. The reaction has three distinguishable stages; the first is formation of [Fe(CN)5OH]3–, the second is conversion of [Fe(CN)5OH]3– into [Fe(CN)6]3–, and last is the reduction of [Fe(CN)6]3– to [Fe(CN)6]4– by the HIDA2– released in the first stage. The first stage shows variable-order dependence on cyanide concentration, unity at high cyanide concentration and zero at low cyanide concentration. The second stage exhibits first-order dependence on the concentration of [Fe(CN)5OH]3– as well as on cyanide. The reverse reaction between [Fe(CN)5OH]3– and HIDA2– is first-order in each of these species and inverse first-order in cyanide. On the basis of forward and reverse rate studies, a five-step mechanism has been proposed for the first stage. The first step involves a slow loss of one OH, by a cyanide-independent path.  相似文献   

16.
The oxidation of H2NOH is first-order both in [NH3OH+] and [AuCl4 ]. The rate is increased by the increase in [Cl] and decreased with increase in [H+]. The stoichiometry ratio, [NH3OH+]/[AuCl4 ], is 1. The mechanism consists of the following reactions.
The rate law deduced from the reactions (i)–(iv) is given by Equation (v) considering that [H+] K a.
The reaction (iii) is a combination of the following reactions:
The activation parameters for the reactions (ii) and (iii) are consistent with an outer-sphere electron transfer mechanism.  相似文献   

17.
The oxidation of ethylenediamine by diperiodatoargentate (III) ion has been studied by stopped‐flow spectrophotometry. Kinetics of this reaction involves two steps. The first step is the complexation of silver (III) with the substrate and is over in about 10 ms. This is followed by a redox reaction in the second step that occurs intramolecularly from the substrate to the silver (III) center. The rate of reduction of silver (III) species by ethylenediamine, ethanolamine, and 1,2‐ethanediol were observed to be 1.2 × 104, 1.1 × 102, and 0.14 dm3 mol−1 s−1, respectively, at 20°C. The reaction rate shows an inverse dependence on [IO] and [OH] in the low concentration range (≤1 × 10‐3 mol dm−3). At higher [OH] (>1 × 10−3 mol dm−3) the rate of reaction starts increasing and attains a limiting value at very high [OH]. The rate of deamination of ethylenediamine is enhanced by its complexation with silver (III). The involvement of [AgIII(H2IO6) (H2O)2] and [AgIII(H2IO6) (OH)2]2− are suggested as the reactive silver (III) species kinetically in mild basic and basic conditions, respectively. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 286–293, 2000  相似文献   

18.
Summary The kinetics of the anation reaction of [Co(NH3)5H2O]3+ by H3PO3/H2PO 3 , to give [CoH2PO3(NH3)5]2+, have been studied at 60, 70 and 80°C, in the acidity range [H+](M)=1.5 · 10–1 –2.0 · 10–3. Only H2PO3 is found to be reactive. The rate data is consistent with an Id mechanism. The mean value of outer sphere association of [Co(NH3)H2O]3+ with H2PO 3 is 1.5 M–1. Values of the interchange constants are: 1044ki(s–1)= 0.29, 1.47, 5.13, at 60, 70 and 80 °C respectively (H= 1.4 · 102KJmol–1, S=8.3 · 10 JK–1 mol–1). The first acidity constant of H3PO3 at I=1.0 has also been determined: 102Ka(M)=4.8, 5.2 and 5.5, at 25, 40 and 50 °C respectively.  相似文献   

19.
A novel chromium(III) complex of tetraoxalylurea was prepared. In aqueous solutions, [CrIII(H2L)(H2O)]+ (H2L = diprotonated tetraoxalylurea) is oxidized by IO 4 according to the rate law
  相似文献   

20.
The kinetics of oxidation of 2-thiouracil (TU) by sodium N-bromobenzenesulphonamide or bromamine-B (BAB) have been studied in an HCl medium, catalyzed by RuCl3, and in a NaOH media with OsO4 as catalyst, at 313 K. The stoichiometry and oxidation products are the same in both cases, but their kinetic patterns were found to be different. In acid medium the rate shows a first order dependence in each of [BAB] and [TU], and is dependent on [RuIII]. The reaction rate is inversely dependent on [H+]. In alkaline medium, the rate is first order in [BAB] and in [OsVIII] and zero order in [TU]. The reaction rate is dependent on [NaOH]. Activation parameters have been evaluated, solvent isotope effects have been studied in D2O medium, and equilibrium constants were calculated. The activation parameters and rate constants indicate that the catalytic efficiency is: OsVIII > RuIII. The proposed mechanisms and the derived rate laws are consistent with the observed kinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号