首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A detailed analysis of the effect of calcium carbonate nanoparticles on crystallization of isotactic polypropylene (iPP) is reported in this contribution. CaCO3 nanoparticles with different crystal modifications (calcite and aragonite) and particle shape were added in small percentages to iPP. The nanoparticles were coated with two types of compatibilizer (either polypropylene-g-maleic anhydride copolymer, or fatty acids) to improve dispersion and adhesion with the polymer matrix.It was found that the type of coating agent used largely affects the nucleating ability of calcium carbonate towards formation of polypropylene crystals. CaCO3 nanoparticles coated with maleated polypropylene can successfully promote nucleation of iPP crystals, whereas the addition of nanosized calcium carbonate coated with fatty acids delays crystallization of iPP, the effect being mainly ascribed to the physical state of the coating in the investigated temperature range for crystallization of iPP, as well as to possible dissolution by fatty acids of heterogeneities originally present in the polypropylene matrix.  相似文献   

2.
Thermal and γ radiation stability of iPP containing CaCO3 nanoparticles were investigated by oxygen uptake procedure at 190 °C. The loading of iPP matrix was maximum 25% (w/w). The behavior on thermal oxidation was investigated for two formulations of iPP compounds differing by the surface characteristics of nanoparticles (i.e. uncoated and stearic acid-coated filler). Three irradiation doses (5, 15 and 25 kGy) were applied. The efficient protection of stabilizers that are present in the as-prepared formulations was emphasized by proper values of the kinetic parameters obtained for oxidation. The contribution of CaCO3 nanoparticles to the oxidative process of iPP is discussed.  相似文献   

3.
Isotactic polypropylene (iPP) based nanocomposites filled with calcium carbonate nanoparticles (CaCO3) were prepared by melt mixing and structure-properties relationships of the nanomaterials were studied. Elongated CaCO3 nanopowders coated with two different coating agents, polypropylene-maleic anhydride graft copolymer (iPP-g-MA) and fatty acids (FA), were tested as nanoreinforced phases. The influence of surface treatment of the nanoparticles on the polymer/nanofillers interfacial adhesion and on the final materials properties was investigated. Morphological analysis showed that the selected coating agents induce different iPP/nanofiller adhesion degrees. Young's modulus increases as a function of the nanoparticles content and the coating agent nature. Finally, all the prepared nanocomposites showed a significant improvement of iPP barrier properties either to oxygen or to carbon dioxide.  相似文献   

4.
The mechanical and morphological characteristics of PA6/ABS (60/40)-based hybrid composite containing HNO3-treated short carbon fibers (HSCF) and CaCO3 nanoparticles have been experimentally studied. A counter-rotating twin-screw extruder and an injection molding machine were employed to produce different samples containing 10 wt % of HSCF and 0, 2, 5 and 8 wt % of CaCO3 nanoparticles. The SEM observations indicated high-quality adhesion between HNO3-surface treated carbon fibers and PA6/ABS polymer matrix. In addition, the morphological studies showed that the inclusion of CaCO3 nanoparticles caused a significant effect on the ABS particle dispersion in PA6/ABS matrix. The mechanical properties assessments revealed that the incorporation of 10 wt % HSCF into the PA6/ABS can significantly improve tensile strength (82%), tensile modulus (107%), flexural strength (98%), flexural modulus (104%) and impact resistance (24%). The inclusion of CaCO3 nanoparticles, in the presence of 10 wt % HSCF, led to the noticeable improvements of tensile strength (128% for 2 wt % CaCO3), tensile modulus (199% for 5 wt % CaCO3), flexural strength (146% for 5 wt % CaCO3), flexural modulus (204% for 5 wt % CaCO3) and impact resistance (46% for 2 wt % CaCO3). The surface treatment of carbon fibers, dispersion conditions of nanoparticles and ABS phase in polymeric matrix were found to be the major important factors affecting the mechanical properties.  相似文献   

5.
An amphiphilic derivative of carboxymethylchitosan (CMCS), (2-hydroxyl-3-butoxyl)propyl-CMCS (HBP-CMCS), was used as an organic additive in the precipitation process of calcium carbonate (CaCO3). HBP-CMCS molecules can interact with calcium ions, the functional groups of which act as active sites for the nucleation and crystallization of CaCO3. Simultaneously, HBP-CMCS molecule also functionalizes as a colloidal stabilizer to prohibit the sedimentation of the grown CaCO3 crystals, depending upon the molar ratio of the initial Ca2+ ions to the repeat units of HBP-CMCS molecules. The combination investigations of scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy on the precipitated CaCO3 crystals proved that concentrations of HBP-CMCS and Ca2+ exert great influence on the crystallization habit of CaCO3, such as the nucleation, growth, morphology, crystal form, etc. The formation of the peanut-shaped CaCO3 particles suggests the template effect of HBP-CMCS molecules on the aggregation behavior of CaCO3 nanocrystals.  相似文献   

6.
The influences of nanosized CaCO3 on the thermal and optical properties embedded in poly(methyl methacrylate) (PMMA) and polystyrene (PS) were investigated. Calcium carbonate nanoparticles were synthesized by in situ deposition technique, and its nano size (32–35 nm) was confirmed by scanning electron microscope (SEM) and X-ray studies. Nanocomposites samples of PMMA/CaCO3 and PS/CaCO3 were prepared with different filler loading (0–4 wt%) of CaCO3 nanoparticles by solution mixing technique. The Fourier transform infrared analysis confirmed that CaCO3 nanoparticles were present in the polymers matrices. The morphology and elemental composition of nanocomposites were evaluated by SEM and energy dispersive X-ray spectroscopy. The thermal properties of nanocomposites were characterized by differential scanning calorimetric, thermogravimetric, and differential thermogravimetry analysis, and the results indicate that the incorporation of CaCO3 nanoparticles could significantly improve the thermal properties of PMMA/CaCO3 and PS/CaCO3 nanocomposites. The glass transition temperature (T g ) and decomposition temperature (T d ) of nanocomposites with 4 wt% of CaCO3 nanoparticles were increased by 30 and 24 K in case of PMMA/CaCO3 and 32  and 15 K in the case of PS/CaCO3 nanocomposites, respectively. The obtained transparent nanocomposites films were characterized using UV–Vis spectrophotometer which shows the transparencies of nanocomposites are almost maintained in visible region while the intensity of absorption band in ultraviolet (UV) region is increased with CaCO3 nanoparticles contents and these composites particles could enhance the UV-shielding properties of polymers.  相似文献   

7.
The thermal stability, kinetics and glass forming ability of an Fe77C5B4Al2GaP9Si2 bulk amorphous alloy have been studied by differential scanning calorimetry. The activation energy, frequency factor and rate constant corresponding to the multiple crystallization steps were determined by the Kissinger method. X-ray diffraction and transmission electron microscopy studies revealed that the crystallization starts with the primary precipitation of α-Fe from the amorphous matrix. The kinetics of nucleation of the α-Fe nanoparticles was investigated by two different methods, i.e. isothermal annealing and continuous heating after partial annealing.  相似文献   

8.
A new family of thermoplastic nanocomposites based on isotactic polypropylene (iPP) and inorganic fullerene‐like tungsten disulfide (IF‐WS2) has been successfully prepared. A very efficient dispersion of IF‐WS2 material was obtained by mixing in the melted polymer without using modifiers or surfactants. The addition of IF‐WS2 nanoparticles induces a remarkable enhancement of the thermal stability of iPP, as well as an increase in the crystallization rate of the matrix when compared with pure iPP. The nucleating efficiency of IF‐WS2 solid lubricant nanoparticles on the α‐phase of iPP reaches very high values (60–70%), the highest values observed hitherto for polypropylene nanocomposites. The incorporation of IF‐WS2 has also been observed to increase the size and stability of the crystals formed. The melting behavior of the nanocomposites indicates the formation of more perfect crystals as determined by differential scanning calorimetry and time‐resolved synchrotron X‐ray scattering experiments. The new nanocomposites show an increase in the storage modulus with respect to pure iPP measured by dynamic mechanical analysis. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2309–2321, 2007  相似文献   

9.
The nonisothermal crystallization kinetics of poly(vinylidene fluoride) (PVDF) in PVDF/MMT, SiO2, CaCO3, or PTFE composites was investigated through differential scanning calorimetry measurements. The enhanced nucleation of PVDF in its nanocomposites with four types of nanoparticle, and their impact on the crystallization kinetics and melting behaviors were discussed. The modified Avrami method and combined Ozawa–Avrami approaches successfully described the primary crystallization of PVDF in nanocomposite samples under the nonisothermal crystallization process. The activation energy was determined according to the Friedman method and it was quite fit with the results of the analysis according to the modified Avrami model and a combined Ozawa–Avrami model.  相似文献   

10.
The effects of calcium carbonate (CaCO3) and calcium sulfate (CaSO4) nanoparticles on the thermal and UV-absorbing properties of polyvinyl acetate (PVAc) were analyzed in this study. Nanoparticles of CaCO3 and CaSO4 were synthesized by in situ deposition technique. The size and shape of nanoparticles were recognized by X-ray diffraction and scanning electron microscope (SEM) analyses which confirmed that the particle was having a diameter of 25–33 nm. In this technique, the surface modification of nanoparticles was done by non-ionic polymeric surfactant. PVAc/CaCO3 and PVAc/CaSO4 nanocomposites film samples with an average thickness of 30 µm and in the mass ratio of nanoparticles (0–4% (w/w)) were prepared by solution mixing technique. Chemical, structural, and elemental characterizations of nanocomposites were done by, fourier transform infrared, SEM, and energy dispersive X-ray spectroscopy analyses, respectively. Thermal properties of pure polymer and nanocomposites were characterized through differential scanning calorimetric, thermogravimetric, and differential thermogravimetry techniques. The glass transition temperature of nanocomposites increases with increase in content of nanoparticles. It may be due to the interaction between inorganic and organic components. The thermogravimetric analysis results indicate that the thermal degradation temperatures of nanocomposites were enhanced upon the addition of nanosized inorganic fillers. The thermal results show that PVAc/CaSO4 nanocomposites were more thermally stable than PVAc/CaCO3 nanocomposites. The addition of nanoparticles affects degradation mechanism and consequently improves thermal stability of PVAc. The reduction of polymer chain mobility and the tendency of nanoparticles to eliminate free radicals were the principal effects responsible for these enhancements. The ultraviolet–visible (UV–Vis) absorbance spectra of PVAc and its nanocomposites films show that the intensity of absorbance increases with increasing filling content, suggesting that nanocomposites films have greater UV-shielding property.  相似文献   

11.
Titania thin films were synthesized by sol–gel dip-coating method with metallic Ni nanoparticles synthesized separately from an organometallic precursor Ni(COD)2 (COD = cycloocta-1,5-diene) in presence of 1,3-diaminopropane as a stabilizer. Titania was obtained from a titanium isopropoxide precursor solution in presence of acetic acid. A Ni/TiO2 sol system was used to coat glass substrate spheres (6, 4 and 3 mm diameter sizes), and further heat treatment at 400 °C was carried out to promote the crystallization of titania. XRD analysis of the TiO2 films revealed the crystallization of the anatase phase. Transmission Electron Microscopy (TEM) and High Resolution TEM studies of Ni nanoparticles before mixing with the TiO2 solution revealed the formation of Ni nanostructures with an average size of 5–10 nm. High-angle annular dark-field images of the Ni/TiO2 system revealed well-dispersed Ni nanoparticles supported on TiO2 and confirmed by AFM analysis. The photocatalytic activity of the Ni/TiO2 films was evaluated in hydrogen evolution from the decomposition of ethanol using a mercury lamp for UV light irradiation. Titania films in presence of Ni nanoparticles show higher efficiency in their photocatalytic properties in comparison with TiO2.  相似文献   

12.
A magnetically recoverable cationic exchanger has been effectively prepared through immobilized chloroacetic acid (CA) onto the Fe3O4 nanoparticles. The magnetic nanoparticles (MNPs) were synthesized by a coprecipitation method in an aqueous system. The MNPs were modified with sodium silicate and chloroacetic acid (CA), thus endowed these nanoparticles with strong magnetism and good dispersion. The physicochemical properties of the cationic exchange materials were characterized with Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), X-ray diffraction (XRD) and thermal gravimetric analysis (TGA). The magnetic properties of the cationic exchange materials were analyzed by a vibrating sample magnetometer (VSM). The content of ions was measured by atomic absorption spectrophotometric method. The prepared cationic exchange nanoparticles display an excellent magnetic property with a saturation magnetization value of 26.58 emu/g and the prepared exchanger possess considerable thermal stability, which indicating a great potential application in heavy metal ion wastewater treatment. In this experiment, the exchange capacity of lead ion was 3.4 mmol g–1, And the maximum lead removal rate is up to 73.85%.  相似文献   

13.
Summary We have fabricated glasses in the Bi-2223 HTc superconductor system with Bi2Sr2Ca2Cu3-xErxO10+ δ nominal composition, where x=0.5 and 1.0, by the glass-ceramic technique. Using an analysis developed for non-isothermal crystallization studies, information on some aspects of crystallization temperature and thermal properties has been obtained. The crystallization studies were made using DTA with several uniform rates. The calculations of crystallization activation energies, Ea, and the Avrami parameters, n, were made based on the non-isothermal kinetic theory of Kissinger and the Ozawa’s equations. The DTA data of the samples showed that the first crystallization temperature, Tx1, increases and the second crystallization temperature, Tx2, decreases by increasing the Er concentration. This suggests that the Er substitution had significant effect on the glassification of the BSCCO material due to change on the surface nucleation and increased ionic activities at high temperature region. The activation energy for crystallization, Ea, of the samples was also showed an increase at high Er concentration case. However, the Avrami parameter, n, decreased from 2.5 to 1.7 for x=0.5 and 1.0 samples, respectively. This suggests that the growth mechanism is diffusion-controlled and three-dimensional parabolic growth takes place near the first crystallization temperature. The oxidization rates and the activation barrier for oxygen out-diffusion process, E, was calculated using the TG data. It was found that the total mass gain in the x=0.5 sample is comparably smaller than that of the x=1.0 sample. This shows that the oxygen absorption of the x=1.0 sample is faster than the x=0.5 sample, leading to increase in the oxidization rate in the x=1.0 material.  相似文献   

14.
Phase change nanocomposites were prepared by dispersing γ-Al2O3 nanoparticles into melting paraffin wax (PW). Intensive sonication was used to make well dispersed and homogeneous composites. Differential scanning calorimetric (DSC) and transient short-hot-wire (SHW) method were employed to measure the thermal properties of the composites. The composites decreased the latent heat thermal energy storage capacity, L s, and melting point, T m, compared with those of the PW. Interestingly, the composites with low mass fraction of the nanoparticles, have higher latent heat capacity than the calculated latent heat capacity value. The thermal conductivity of the nanocomposites was enhanced and increased with the mass fraction of Al2O3 in both liquid state and solid state.  相似文献   

15.
The effect of organo‐modified clay (Cloisite 93A) on the crystal structure and isothermal crystallization behavior of isotactic polypropylene (iPP) in iPP/clay nanocomposites prepared by latex technology was investigated by wide angle X‐ray diffraction, differential scanning calorimetry and polarized optical microscopy. The X‐ray diffraction results indicated that the higher clay loading promotes the formation of the β‐phase crystallites, as evidenced by the appearance of a new peak corresponding to the (300) reflection of β‐iPP. Analysis of the isothermal crystallization showed that the PP nanocomposite (1% C93A) exhibited higher crystallization rates than the neat PP. The unfilled iPP matrix and nanocomposites clearly shows double melting behavior; the shape of the melting transition progressively changes toward single melting with increasing crystallization temperature. The fold surface free energy (σe) of polymer chains in the nanocomposites was lower than that in the PP latex (PPL). It should be reasonable to treat C93A as a good nucleating agent for the crystallization of PPL, which plays a determinant effect on the reduction in σe during the isothermal crystallization of the nanocomposites. The activation energy, ΔEa, decreased with the incorporation of clay nanoparticles into the matrix, which in turn indicates that the nucleation process is facilitated by the presence of clay. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1927–1938, 2010  相似文献   

16.
The catalytic activity of cobalt borides forming in situ under conditions of NH3BH3 and NaBH4 hydrolysis have been investigated. The reaction properties of the catalysts depend on the nature of the hydride. According to high-temperature X-ray diffraction, thermal analysis, high-resolution transmission electron microscopy, IR spectroscopy, and chemical analysis data, the nature of the hydride determines the particle size, chemical composition, and crystallization properties of the cobalt borides.  相似文献   

17.
Calcium carbonate (CaCO3)/polystyrene (PS) nanoparticles (<100 nm) with core–shell structure were synthesized by atomized microemulsion technique. The polymer chains were anchored onto the surface of nano‐CaCO3 through triethoxyvinyl silane (TEVS) as a coupling agent. Ammonium persulfate (APS), sodium dodecyl sulfate (SDS) and n‐pentanol were used as initiator, surfactant, and cosurfactant, respectively. Polymerization mechanism of core–shell latex particles was discussed. Encapsulation of nano‐CaCO3 by PS was confirmed by using transmission electron microscope (TEM). Grafting percentage of core–shell particles was investigated by Thermogravimetric Analyzer (TGA). Nano‐CaCO3/PS core–shell particles were characterized by Fourier transform infrared (FTIR) spectrophotometer and differential scanning calorimeter (DSC). The results of FTIR revealed existence of a strong interaction at the interface of nano‐CaCO3 particle and PS, which implies that the polymer chains were successfully grafted onto the surface of nano‐CaCO3 particle through the link of the coupling agent. In addition, TGA and DSC results indicated an enhancement of thermal stability of core–shell materials compared with the pure nano‐PS. Nano‐CaCO3/PS particles were blended with polypropylene (PP) matrix on Brabender Plastograph by melt process with different wt% of loading (i.e. 0.1–1 wt%). The interfacial adhesion between nano‐CaCO3 particles and PP matrix was significantly improved when the nano‐CaCO3 particles were grafted with PS, which led to increased thermal, rheological, and mechanical properties of (nano‐CaCO3/PS)/PP composites. Scanning electron microscope (SEM) and atomic force microscope (AFM) images showed a perfect dispersion of the nano‐CaCO3 particles in PP matrix. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
The effect of active H2S, HS·, and atomic hydrogen impurities on the condensation of highly supersaturated carbon vapor obtained in the combined laser photolysis of a mixture of C3O2 and H2S diluted with argon was studied. The concentrations of carbon vapor, HS·, and atomic hydrogen obtained in the laser photolysis of the mixture were determined using the absorption cross sections of C3O2 and H2S molecules measured in this work and the measured amount of absorbed laser radiation. The time profiles of the sizes of growing nanoparticles synthesized in C3O2 + Ar and C3O2 + H2S + Ar mixtures were measured using the laser-induced incandescence (LII) method. An improved LII model was developed, which simultaneously took into account the heating and cooling of nanoparticles and the temperature dependence of the thermophysical properties of nanoparticles, as well as the cooling of nanoparticles by evaporation and thermal emission. The size distributions of carbon nanoparticles formed in the presence and absence of active impurities were determined with the use of a transmission electron microscope. The final average size of carbon nanoparticles was found to decrease from 12 to 9 nm upon the addition of H2S to the system, whereas the rate of nanoparticle growth decreased by a factor of 3, and the properties of nanoparticles changed. In particular, the translational energy accommodation coefficient for Ar molecules at the surface of carbon nanoparticles was found to decrease from 0.44 to 0.30. A comparison of the calculated total carbon balance at the early stage of nanoparticle formation with experimental data demonstrated that the reaction C + H2S → HCS· + H, which removes a portion of carbon vapor from the condensation process, has a determining effect on the carbon balance in the system. It was found that HS· and atomic hydrogen affect the carbon balance in the system only slightly. Thus, the experimentally observed decrease in the rate of nanoparticle growth and in the sizes of nanoparticles can be explained by a decrease in the concentration of free carbon upon the addition of H2S molecules to the system.  相似文献   

19.
Silica (SiO2) nanoparticles and silica/calcium carbonate (SiO2/CaCO3) core–shell nanocomposites were prepared by sol–gel technique as fillers for papermaking application. Semi-burned rice straw ash (SBRSA), as waste material, was used to prepare the targeted fillers. Preparation of SiO2 nanoparticles and SiO2/CaCO3 nanocomposites was carried out using Na2SiO3 solution that was prepared from SBRSA and CaCO3 nanoparticles of 30–70 nm. The targeted SiO2/CaCO3 nanocomposites were prepared with different molar ratio of SiO2:CaCO3 1:15, 1:10 and 1:5. The percentage of silica increased from 62.5% to 82.9% by thermal treatment of SBRSA at 800 °C for 2 h. The prepared SiO2 nanoparticles and SiO2/CaCO3 nanocomposites were characterized by using XRD, XRF, TEM, FT-IR and Zeta potential. The results indicate that a pure semi-crystalline SiO2 nanoparticle and semi-crystalline shell of SiO2 coated CaCO3 core particles were produced. The work extended also to investigate the effect of the prepared fillers on physical, mechanical and optical properties of paper.Application of the prepared SiO2 nanoparticles and SiO2/CaCO3 nanocomposites improved the optical properties of paper (brightness, whiteness and opacity) but it slightly reduced the mechanical properties when compared to commercial precipitated CaCO3 (PCC) filler.The results showed that the retention of SiO2 nano-particles was highly increased. The retention of the prepared nanocomposites increased along with increasing of SiO2:CaCO3 molar ratio.  相似文献   

20.
A soapless emulsion polymerization method was applied to synthesize CaCO3/PMMA spherical composite with different loading of CaCO3. CaCO3 nanoparticles were pretreated with oleic acid after the carbonation process of Ca(OH)2 slurry by CO2, in order to improve the compatibility between the CaCO3 particles and MMA monomer in emulsion system. The results of photon correlation spectroscopy (PCS) showed the particles size of composites were bigger than the pure PMMA. And the size increased with the increase of the content of CaCO3 nanoparticles. TEM images showed that the morphology of the composite microspheres was uniform and CaCO3 nanoparticles can be well encapsulated in the polymeric microsphere, and were located at the edge of the spheres. The results of DTG and TG indicated that the CaCO3 nanoparticles could improve the thermal stability of PMMA. Moreover, capsulation of CaCO3 by PMMA can increase the acid-resistant of CaCO3 nanofillers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号