首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 315 毫秒
1.
A method of controlling the duration of pulses of intense molecular beams is suggested. The idea of the method is the shortening of an initial molecular beam pulse by producing a pressure shock in front of a solid surface through which the beam passes. Experiments on shortening H2, He, SF6, SF6/H2(1/10), and SF6/He(1/10) molecular beam pulses are reported. The parameters of the beams incident on, and transmitted through, the surface are studied. The gas density in the initial beam and in the pressure shock before the surface is estimated. The intensity and duration of shortened molecular pulses are found as a function of the initial intensity, angle of incidence, and the diameter of a hole on the surface through which the beam passes. It is established that the duration of the shortened beam decreases greatly with increasing incident intensity and decreasing hole diameter. It is shown that intense pulsed H2, He, SF6, SF6/H2(1/10), and SF6/He(1/10) molecular beams with a pulse duration of ≤10–15 μs and an extent of ≤1–2 cm can be generated with the method suggested.  相似文献   

2.
A method is suggested for generating high-intensity secondary pulsed molecular beams in which the kinetic energy of molecules can be controlled by an intense laser IR radiation through the vibrational excitation of molecules in the source. High-intensity [≥1020 molecule/(sr s)] SF6 molecular beams with a kinetic energy of ?1.0 eV without carrier gas and of ?1.9 and ?2.4 eV with carrier He (SF6/He=1/10) and H2 (SF6/H2=1/10) gases, respectively, were obtained.  相似文献   

3.
A method for obtaining an intense secondary pulsed molecular beam is described. The kinetic energy of molecules in the beam can be controlled by vibrational excitation of the molecules in the source under high-power IR laser radiation. A compression shock (shock wave) is used as a source of secondary beams. The shock wave is formed in interaction between an intense pulsed supersonic molecular beam (or flow) and a solid surface. The characteristics of the secondary beam were studied. Its intensity and the degree of gas cooling in it were comparable with the corresponding characteristics of the unperturbed primary beam. Vibrational excitation of molecules in the shock wave and subsequent vibrational-translational relaxation, which occurs when a gas is expanded in a vacuum, allow the kinetic energy of molecules in the secondary beam to be substantially increased. Intense [≥1020 molecules/(sr s)] beams of SF6 and CF3I molecules with kinetic energies approximately equal to 1.5 and 1.2 eV, respectively, were generated in the absence of carrier gases, and SF6 molecular beams with kinetic energies approximately equal to 2.5 and 2.7 eV with He (SF6/He=1/10) and H2 (SF6/H2=1/10) as carrier gases, respectively, were obtained. The spectral and energy characteristics of acceleration of SF6 molecules in the secondary beams were studied. The optimal conditions were found for obtaining high-energy molecules. The possibility of accelerating radicals in secondary molecular beams was demonstrated.  相似文献   

4.
A method for the generation of intense pulsed low-kinetic-energy molecular beams is described. The method is based on the formation of a cold (≈77 K) pressure shock as a result of interaction between an intense pulsed gas-dynamically cooled molecular beam with a solid surface. The pressure shock is used as a source of a secondary beam for generating low-energy molecules. The suggested method was used to obtain intense molecular beams of H2, He, CH4, N2, and Kr with kinetic energies lower than or equal to 10 meV and H2/Kr and He/Kr molecular beams with kinetic energies of H2 and He molecules lower than 1 meV. The energy (velocity) of molecules in low-energy beams can be controlled by varying the intensity of the initial beam or temperature in the pressure shock.  相似文献   

5.
A method for obtaining intense pulsed beams of molecules possessing low kinetic energies is proposed. The method is based on the formation of a cold pressure shock (shock wave) in an intense pulsed molecular beam interacting with a solid surface, which serves as a source of the secondary beam of low-energy molecules. The proposed method was successfully used to obtain intense beams of H2, He, CH4, and Kr molecules with kinetic energies not exceeding 10 meV, and H2/Kr and He/Kr beams with kinetic energies of H2 and He molecules below 1 meV.  相似文献   

6.
The importance of pre-ionisation for the non-chain discharge-pumped HF laser is studied through experiments on an X-ray photo-triggered laser using mixtures of Ne, SF6, and ethane. The discharge dynamic in Ne/SF6 mixtures or pure SF6, as well as the stabilisation effect induced by C2H6 and consequences for the laser performance, are investigated for pre-ionisation electron density values, neo, ranging from 106 cm-3 up to 109 cm-3, as well as for the so-called discharge self-breakdown mode. Without ethane, the minimum neo value which is needed to complete 100% homogeneous charge deposition in the plasma is a very sharply increasing function of the SF6 pressure. This hinders performance optimisation when the molecule used to react with F-atoms, for instance H2, has no effect on the discharge dynamic. The minimum ethane partial pressure that is needed to stabilise the discharge depends on neo, the pumping pulse duration, the deposited electric charge, and the SF6 pressure. Discharges in Ne/SF6 can be much more efficiently stabilised by addition of a small amount of ethane than by an increase of neo. A pre-ionisation density as low as 106 cm-3 is sufficient to achieve the maximum laser energy value, but total suppression of the pre-ionisation has a detrimental effect on the active medium homogeneity. Received: 30 May 2000 / Revised version: 9 October 2000 / Published online: 9 February 2001  相似文献   

7.
A comparison of the performance of pulsed infrared HF lasers pumped by phototriggered discharges using either Ne/SF6/H2 or Ne/SF6/C2H6 mixtures are presented. For an active volume of 50 cm3, a specific output energy as high as 11 J/ has been achieved with an efficiency higher than 3% when C2H6 is used as H atom fuel. The replacement of ethane by molecular hydrogen reduces the laser performance by 40%. The investigation of the temporal evolution of the laser intensity shows that this dramatic decrease results from a shortening of the laser pulse duration rather than from a decrease of the peak power. Indications are given that this behavior is correlated to a very different temporal evolution of the discharge parameters, especially at low reduced electric field E/N.  相似文献   

8.
A pyroelectric detector with a time resolution of 3–5 s and a TEA CO2 laser have been used in diagnostics of a pulsed molecular beam (a free jet). The kinetic energy distribution of molecules was determined by using time-of-flight measurements both with a laser and without it. A combination of the laser with the pyroelectric detector makes it possible to determine the kinetic energy distribution of molecules in a selected internal state and to measure the energy absorted by the molecules of the beam from a laser pulse. The results obtained for pure SF6 and the SF6 seeded in He have been presented and analyzed. The advantages and the disadvantages of the method are being discussed in comparison with other available methods of diagnostics of molecular beams and free jets.  相似文献   

9.
The infrared-laser-radiation-controlled capture of chromophore molecules (on an example of SF6) by cold nanoclusters of noble gases (Xe N , N ≥ 100–1000 is the number of atoms in a cluster) in the crossed molecular and cluster beams has been investigated by a new method based on the selective vibrational excitation of molecules by an intense infrared laser pulse before their capture by clusters, which leads to a significant increase in the probability of their desorption from the surface of clusters as compared to the unexcited molecules. The possibility of using the proposed method for the selective doping of clusters with molecules, laser separation of isotopes, and selective transport of molecules to the surface has been discussed.  相似文献   

10.
A fast discharge KrF laser system (λ = 248.5 nm) has been operated at 25 mJ/pulse, 3.0 MW peak power in high pressure He: Kr: fluoride mixtures containing low concentrations of both krypton and the fluorine donors N2F4, NF3 and SF6. Lasing action is reported for the first time in N2F4 and SF6 with optimum energy output at 750 and 160 mJ/l respectively.  相似文献   

11.
The interaction of intense beams of SF6 and CF3I molecules, excited by powerful IR laser radiation to high vibrational states (0.3 eV ≤ E vib ≤ 2.0 eV), with molecules (clusters) condensed on a cold surface (T s ≈ 80–85 K) has been studied. The probability that the excited and unexcited molecules are reflected from the cold metal surface covered by condensed molecules (clusters), as well as the probability that such excited and unexcited molecules are transmitted through a cooled multichannel metal plate and a converging cone oriented at an angle relative to the molecular beam axis, has been determined. Expressions for these probabilities of reflection and transmission as functions of the angle of incidence and the parameters of the exciting laser radiation and the molecular beam are obtained. It is shown that highly vibrationally excited molecules are reflected from the surface and transmitted through the plates and cones with a much higher probability than unexcited molecules. The results suggest that this phenomenon can be used for the separation of molecules in a beam with respect to isotope (or atomic) composition.  相似文献   

12.
A supersonic-free-jet infrared spectrometer has been constructed for investigation of molecular vibrational spectra at low rotational and vibrational temperatures. The sensitivity of measurement in a pulsed jet is increased by employing a phase-sensitive detection method synchronized with the pulse frequency. The performance of the spectrometer is examined for the absorption lines of the NH3 v 2 band. A rotational temperature as low as 16K is attained when seeded in He. Cold-jet spectra are demonstrated for thev 3 bands of PF5,34SF6, and182WF6.  相似文献   

13.
4 and disilane Si2H6 induced by continuous wave CO2 laser irradiation has been investigated under the conditions of chemical vapor deposition (CVD) of amorphous hydrogenated silicon a-Si:H. At the very position of depositing the thin film the stationary chemical composition of the processing gas is probed in situ by an effusive molecular beam which passes through a differential pumping stage into a quadrupole mass spectrometer (QMS). With SiH4 as educt and SF6 as a sensitizer, SiH4 and Si2H6 are found in the processing gas while Si3H8 or higher silanes are lacking. Si2H6 and SF6 lead to SiH4, Si2H6, and Si3H8, but higher silanes are missing. The experimentally determined composition of the processing gas is semi-quantitatively reproduced by model calculations based on the assumption of stationary local equilibrium conditions and applying thermodynamic and spectroscopic data (molecular statistics). The mass balance of the processing gas entering and leaving the CVD chamber states an atomic ratio Si:H of 1:2 for the gas phase species forming the solid deposit on the reactor walls. This finding together with theoretical considerations indicates the intermediate Si2H4 to be the dominating gas phase species forming the a-Si:H thin films. Received: 17 July 1998/Accepted: 20 July 1998  相似文献   

14.
It is shown that, when highly vibrationally excited SF6 molecules (with vibrational energy E vib ≥ 0.5–2 eV) collide with weakly bound van der Waals Ar N , Kr N , or (N2) N (N ≤ 30–40 atoms in a cluster) clusters in intersecting molecular and cluster beams, the molecules are trapped by the clusters, the clusters then undergo full disintegration, and the trapped molecules become free. The method of studying this process and the results obtained are described. The possibilities of application of this method for selective doping of clusters by molecules, laser separation of isotopes, and selective transportation of molecules to a surface are discussed.  相似文献   

15.
The method is described and the experimental results are presented on the temperature determination of the (CF3I) N clusters in a beam (N ⩽ 102 is a number of monomers in a cluster) using SF6 molecules from intersecting molecular beam as probe thermometers. The SF6 molecules are captured by clusters in the crossed cluster and molecular beams and, after a certain time, sublimate from the surface of clusters carrying information on the velocity and temperature (internal energy) of clusters. Using time-of-flight (TOF) method the kinetic energy (velocity) of sublimated SF6 molecules was measured and the temperature of clusters was determined to be T cl = (88 ± 15) K.  相似文献   

16.
The laser-bolometric infrared spectroscopy is an efficient method for measuring the internal energy distributions of molecular beams. Additional informations about the kinetic energy distribution of molecules in a selected internal state can be obtained from time resolved experiments. A fast superconducting bolometer and a pulsed infrared CO2 laser have been used for testing the use of this technique as a universal tool for molecular beam diagnostics. Experimental results are presented and analyzed for pure SF6 and helium seeded with 5% SF6 beams. The efficiency of fast superconducting bolometers, used for molecular beam time-of-flight measurements, is discussed. A comparison is made between time resolved laser-bolometric technique and alternative molecular beam diagnostic methods.  相似文献   

17.
When a CO2 gas absorption cell was placed within the optical cavity of a low pressure pulsed HF laser, the specific vibration- rotation line of the HF laser disappeared, which influenced both the intensity and pulse duration of the neighbouring lines. This behavior strongly depends upon the rotational population transfer in HF. By measuring the time response of this behavior, it was found that the rate constant for the rotational population transfer was in the range of 107 s-1 torr-1 for the SF6/H2 lasing mixture.  相似文献   

18.
Is the critical Reynolds number universal?   总被引:2,自引:0,他引:2  
This paper is devoted to checking whether the critical Reynolds number is universal in identical conditions for the flow of different fluids. The laminar-turbulent transition in a circular pipe flow has been tested experimentally. The flows of inert gases (He, Ne, Ar, Kr, Xe), molecular gases (N2, CO, CO2, SF6), and two similar liquids (H2O, D2O) have been tested. A considerable, up to 40%, difference in critical Reynolds numbers was observed. The possible reasons for nonuniversality of the critical Reynolds number are discussed.  相似文献   

19.
3 , has been performed in Ne/SF6/H2 and Ne/SF6/C2H6 mixtures. Parameters involved have been the storage line capacitance and the circuit inductance, the capacitors charging voltage, the RH-molecule type and partial pressure, and the X-ray dose for the preionization. High laser performance has been achieved with C2H6: an output energy up to 3 J corresponding to a specific energy of 9.6 J/l at an efficiency of 4.7%, which strengthens the advantage of the photo-triggering technique to energize high-power HF lasers. However the optimum performance achieved with H2, 5.75 J/l and 3.5%, are lower. It is shown, through a time-resolved study of the electrical discharge and spatial dynamics correlated to laser power and energy measurements, that discharge instabilities are responsible for the poor laser performance of the mixture with H2. These instabilities, which lead to arc development, are characteristics of the discharge in Ne/SF6. It is demonstrated for the first time that addition of a heavy hydrocarbon, such as C2H6, to that mixture induces the discharge stabilization so that the laser emission arises in a homogeneous active medium. This effect allows us to achieve better laser performance than with H2. Received: 17 March 1998/Revised version: 13 July 1998  相似文献   

20.
The multiphoton absorption of SF6 was investigated in supersonic molecular beams in dependence on the fluence and the wavelength of the CO2 laser. The temperatures of the SF6 molecules have been reduced using seeded beams of different concentrations. The experimental results are discussed on the basis of the known spectroscopic data of SF6 and provide some novel information about the spectral characteristics of the ir-multiphoton excitation of strongly cooled molecules in the collision-free case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号