首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using the Stillinger--Weber (SW) potential model, we investigate the thermal stability of pristine silicon nanowires based on classical molecular dynamics (MD) simulations. We explore the structural evolutions and the Lindemann indices of silicon nanowires at different temperatures in order to unveil atomic-level melting behaviour of silicon nanowires. The simulation results show that silicon nanowires with surface reconstructions have higher thermal stability than those without surface reconstructions, and that silicon nanowires with perpendicular dimmer rows on the two (100) surfaces have somewhat higher thermal stability than nanowires with parallel dimmer rows on the two (100) surfaces. Furthermore, the melting temperature of silicon nanowires increases as their diameter increases and reaches a saturation value close to the melting temperature of bulk silicon. The value of the Lindemann index for melting silicon nanowires is 0.037.  相似文献   

2.
We have studied the length dependence of effective thermal conductivity of silicon nanowires by a thermon gas model and MD simulations. After modifications of the force term by considering the resistance enhancements from thermon gas interactions with the confined surfaces and the ends (inlet and outlet), the theoretical predictions of effective thermal conductivity agree well with the results of MD simulations in the length range of 4 to 550 nm. The result suggests that the resistance enhancement effect by thermon–boundary interactions, instead of the heat inertia, plays the dominating role in the non-Fourier heat conduction in silicon nanowires.  相似文献   

3.
We present a molecular dynamics (MD) implementation of an extended statistical mechanical ensemble that includes ‘alchemical’ degrees of freedom describing particle attributes as thermodynamic variables. We demonstrate the use of this alchemical MD method in inverse design simulations of particles interacting via the Oscillating Pair Potential (OPP) and the Lennard–Jones–Gauss potential (LJG) – two general, previously studied models for which phase diagrams are known. We show that alchemical MD can quickly and efficiently optimise pair potentials for target structures within a specified design space in the low-temperature regime, where internal energy adequately represents the features of the alchemical free energy landscape. We show that alchemical MD can be also used to inversely design pair potentials to achieve target materials properties (here, bulk modulus) directly, without explicit knowledge of the structure–property relationship. Alchemical MD can easily be generalised and applied to any target materials properties or structures and used with any differentiable interaction potential.  相似文献   

4.
"采用一种新的化学溶液法合成了具有不同形貌的碲、硒碲合金纳米线.用十二烷基苯磺酸钠作为表面活性剂实现了对纳米线的可控合成,通过控制反应过程可以弯曲状、"V"字型的硒碲纳米线,利用XRD、TEM以及HRTEM对纳米线的形貌结构特征进行表征;以实验结果为依据讨论了纳米线的生长机理."  相似文献   

5.
The characterization of nanostructures with spectroscopic methods is a fundamental tool in nanoscience. For novel nanostructures, the interpretation of spectral features is a challenging task. To address this issue, we present the “Symmetry‐Filtered Molecular Dynamics (SFMD)” method to calculate Raman and infrared wavenumbers from molecular dynamics (MD) simulations, employing only the symmetry of the atomic structure. Explicit and expensive calculations of the electric polarizability or the dipole moment are not required. Therefore, our method can be easily used with any standard MD software. On the basis of the density functional tight‐binding method for the MD simulations, we apply our method to bulk silicon and small‐diameter hydrogen‐passivated silicon nanowires. For bulk silicon, we study the wavenumber shift of the Raman peak with temperature and obtain results that are in good agreement with experiments. We further show that thermal lattice expansion is a minor effect (22%) and that temperature‐driven anharmonic effects (78%) are the main contributions to that wavenumber shift. By analyzing the bond lengths of different silicon nanowires, we found that surface stress manifests as a 0.37% shortening of bonds only in the outermost silicon layer. We further analyzed the diameter‐dependent wavenumber shift of a Raman peak in silicon nanowires. We found that the main contribution to the wavenumber shift comes from the phonon confinement effect and surface stress leads to an additional shift of 9–22%. Our results indicate that our method is able to produce quantitative results that can be compared with experiments. We propose our method to be used for the understanding of Raman and infrared spectra of novel bulk and nanostructures. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper we review recent highlights of our research on the interaction of ultrafast laser pulses with surfaces with the aim of analyzing the fundamental mechanisms during micro/nanoprocessing of the irradiated surfaces and investigate the perspectives and applications arising from the irradiation of novel complex and functional materials with simple as well as temporally modulated femtosecond laser pulses. Our results on the irradiation of Si and ZnO surfaces show that the crater size and the ripple formation can be controlled by irradiation with properly temporally shaped laser pulses. Together with simulations of the dynamics of the phase changes of the material’s surface we show the potential for understanding and tailoring the engineering of smart optical materials at the micro- and nanoscale intended for novel optoelectronic applications and devices.  相似文献   

7.
In recent years, it has become possible to create well-ordered semiconductor surfaces with metallic surface states by using self-assembly of metal atoms. Since these states lie in the band gap of the semiconductor, they completely decouple from the substrate. In addition to two-dimensional structures it is possible to obtain arrays of one-dimensional atomic chains, which may be viewed as the ultimate nanowires. The dimensionality can be varied systematically by using vicinal surfaces with variable step spacing. Angle-resolved photoemission and scanning tunnelling spectroscopy reveal surprising features, such as a fractional band filling, nanoscale phase separation into doped and undoped chain segments, and a spin-splitting at a non-magnetic surface. Prospects for one-dimensional electron gas physics in atomic chains are discussed.  相似文献   

8.
We investigate the diffusion of a single metal atom on the surface of a fcc (001) metal. Two points concerning the application of kinetic models to diffusion were considered. First, we test the assumption of kinetic models that diffusion occurs via a sequence of uncorrelated jumps. Second, when kinetic models are applicable we predict reasonable values of the kinetic rate constants.

Direct molecular dynamics (MD) simulations were performed for Ag on Ag(001) and Rh on Rh(001) systems. Diffusion was found to obey an Arrhenius-type dependence on temperature in both systems. The barriers and prefactors extracted from the MD results agree with estimates made from transition state theory (TST) and the experimental values for the Rh system. We conclude that kinetic models are applicable to diffusion on fcc (001) surfaces.

Transition state theory was then used to estimate diffusion parameters for all other adsorbate/ substrate combinations of the metals Ni, Cu, Rh, Pd, Ag, Pt, and Au. These results indicate that the characteristics of diffusion are primarily a property of the adsorbate. We also predict Ag atoms to have an anomalously low diffusion barrier on all of the substrates in this study. We use the accurate many-body density functional based MD/MC-CEM potential energy surface which allows us to consistently treat these multi-component systems.  相似文献   


9.
We present results of Molecular Dynamics (MD) calculations on the behavior of liquid nanodroplets on rough hydrophobic and hydrophilic solid surfaces. On hydrophobic surfaces, the contact angle for nanodroplets depends strongly on the root-mean-square roughness amplitude, but it is nearly independent of the fractal dimension of the surface. Since increasing the fractal dimension increases the short-wavelength roughness, while the long-wavelength roughness is almost unchanged, we conclude that for hydrophobic interactions the short-wavelength (atomistic) roughness is not very important. We show that the nanodroplet is in a Cassie-like state. For rough hydrophobic surfaces, there is no contact angle hysteresis due to strong thermal fluctuations, which occur at the liquid-solid interface on the nanoscale. On hydrophilic surfaces, however, there is strong contact angle hysteresis due to higher energy barrier. These findings may be very important for the development of artificially biomimetic superhydrophobic surfaces.  相似文献   

10.
Transition-metal chalcogenide nanowires(TMCN) as a viable candidate for nanoscale applications have been attracting much attention for the last few decades. Starting from the rigid building block of M_6 octahedra(M = transition metal),depending on the way of connection between M_6 and decoration by chalcogenide atoms, multiple types of extended TMCN nanowires can be constructed based on some basic rules of backbone construction proposed here. Note that the well-known Chevrel-phase based M_6X_6 and M_6X_9(X = chalcogenide atom) nanowires, which are among our proposed structures, have been successfully synthesized by experiment and well studied. More interestingly, based on the construction principles, we predict three new structural phases(the cap, edge, and CE phases) of Mo_5S_4, one of which(the edge phase) has been obtained by top-down electron beam lithography on two-dimensional MoS_2, and the CE phase is yet to be synthesized but appears more stable than the edge phase. The stability of the new phases of Mo_5S_4 is further substantiated by crystal orbital overlapping population(COOP), phonon dispersion relation, and thermodynamic calculation. The barrier of the structural transition between different phases of Mo_5S_4 shows that it is very likely to realize an conversion from the experimentally achieved structure to the most stable CE phase. The calculated electronic structure shows an interesting band nesting between valence and conduction bands of the CE Mo_5S_4 phase, suggesting that such a nanowire structure can be well suitable for optoelectronic sensor applications.  相似文献   

11.
We review current research on the electronic properties of nanoscale metallic islands and clusters deposited on semiconductor substrates. Reported results for a number of nanoscale metal-semiconductor systems are summarized in terms of their fabrication and characterization. In addition to the issues faced in large-area metal-semiconductor systems, nano-systems present unique challenges in both the realization of well-controlled interfaces at the nanoscale and the ability to adequately characterize their electrical properties. Imaging by scanning tunneling microscopy as well as electrical characterization by current-voltage spectroscopy enable the study of the electrical properties of nanoclusters/semiconductor systems at the nanoscale. As an example of the low-resistance interfaces that can be realized, low-resistance nanocontacts consisting of metal nanoclusters deposited on specially designed ohmic contact structures are described. To illustrate a possible path to employing metal/semiconductor nanostructures in nanoelectronic applications, we also describe the fabrication and performance of uniform 2-D arrays of such metallic clusters on semiconductor substrates. Using self-assembly techniques involving conjugated organic tether molecules, arrays of nanoclusters have been formed in both unpatterned and patterned regions on semiconductor surfaces. Imaging and electrical characterization via scanning tunneling microscopy/spectroscopy indicate that high quality local ordering has been achieved within the arrays and that the clusters are electronically coupled to the semiconductor substrate via the low-resistance metal/semiconductor interface.  相似文献   

12.
We present a statistical mechanics model treating the formation and the fragmentation of fullerenes as a phase transition. Based on this model, we investigate the formation and fragmentation of C60 and C240 fullerenes from and to a gas of carbon dimers by means of molecular dynamics (MD) simulations. These simulations were conducted for 500 ns using a topologically-constrained forcefield. At the phase transition temperature, both the cage and gaseous phases were found to coexist and the system continuously oscillates between the two phases. Combining the results of the MD simulations and the statistical mechanics approach, we obtain the dependence of the phase transition temperature on pressure and compare the results of our model with arc-discharge experiments.  相似文献   

13.
李全军  刘冰冰 《中国物理 B》2016,25(7):76107-076107
Recently, the high pressure study on the TiO_2 nanomaterials has attracted considerable attention due to the typical crystal structure and the fascinating properties of TiO_2 with nanoscale sizes. In this paper, we briefly review the recent progress in the high pressure phase transitions of TiO_2 nanomaterials. We discuss the size effects and morphology effects on the high pressure phase transitions of TiO_2 nanomaterials with different particle sizes, morphologies, and microstructures. Several typical pressure-induced structural phase transitions in TiO_2 nanomaterials are presented, including size-dependent phase transition selectivity in nanoparticles, morphology-tuned phase transition in nanowires, nanosheets,and nanoporous materials, and pressure-induced amorphization(PIA) and polyamorphism in ultrafine nanoparticles and TiO_2-B nanoribbons. Various TiO_2 nanostructural materials with high pressure structures are prepared successfully by high pressure treatment of the corresponding crystal nanomaterials, such as amorphous TiO_2 nanoribbons, α-PbO_2-type TiO_2 nanowires, nanosheets, and nanoporous materials. These studies suggest that the high pressure phase transitions of TiO_2 nanomaterials depend on the nanosize, morphology, interface energy, and microstructure. The diversity of high pressure behaviors of TiO_2 nanomaterials provides a new insight into the properties of nanomaterials, and paves a way for preparing new nanomaterials with novel high pressure structures and properties for various applications.  相似文献   

14.
Ohmic and rectifying metal contacts to semiconductor nanowires are integral to electronic device structures and typically require different metals and different process techniques to form. Here we show how a noble metal ion beam of Pt commonly used to pattern conducting contacts in electron microscopes can form both ohmic and Schottky/blocking contacts on ZnO nanowires by controlling native point defects at the intimate metal‐semiconductor interface. Spatially‐resolved cathodoluminescence spectroscopy on a nanoscale both laterally and in depth gauges the nature, density, and spatial distribution of specific native point defects inside the nanowires and at their metal interfaces. Combinations of electron and ion beam deposition, annealing, and sculpting of the same nanowire provide either low contact resistivity ohmic contacts or a high Schottky/blocking barrier with a single metal source. These results highlight the importance of native point defects distributed inside nanowires and their variation near interfaces with sculpting and annealing.  相似文献   

15.
Sputtering of an amorphous or crystalline material by an ion beam often results in the formation of periodic nanoscale ripple patterns on the surface. In this Letter, we show that, in the case of alloy surfaces, the differences in the sputter yields and surface diffusivities of the alloy components will also lead to spontaneous modulations in composition that can be in or out of phase with the ripple topography. The degree of this kinetic alloy decomposition can be altered by varying the flux of the ion beam. In the high-temperature and low-flux regime, the degree of decomposition scales linearly with the ion flux, but it scales inversely with the ion flux in the low-temperature, high-flux regime.  相似文献   

16.
H. S. Park  V. Laohom 《哲学杂志》2013,93(14-15):2159-2168
Atomistic simulations are utilized to quantify the effects of surface composition on stress-induced B2 to body centred tetragonal (BCT) martensitic phase transformations in intermetallic nickel aluminium (NiAl) nanowires. The simulations show that the phase transformation is observed in all considered cases, regardless of the material composition of the transverse {100} surfaces of the initially B2 wires. The results indicate that, for ?100? oriented B2 wires with {100} transverse surfaces, the {100} orientation and not the material composition of the {100} surfaces is the dominant factor in controlling the ability of NiAl alloys to undergo martensitic phase transformations at nanometer scales.  相似文献   

17.
We report the experimental and theoretical study of the dispersive behavior of surface plasmon polaritons (SPPs) on cylindrical metal surfaces in the terahertz frequency range. Time-domain measurements of terahertz SPPs propagating on metal wires reveal a unique structure that is inconsistent with a simple extrapolation of the high frequency portion of the dispersion diagram for SPPs on a planar metal surface, and also distinct from that of SPPs on metal nanowires observed at visible and near-infrared frequencies. The results are consistent with a numerical solution of Maxwell's equations, showing that the dispersive behavior of SPPs on a cylindrical metal surface at terahertz frequencies is quite different from that of SPPs on a flat surface. These findings indicate the increasing importance of skin effects for SPPs in the terahertz range, as well as the enhancement of such effects on curved surfaces.  相似文献   

18.
Novel phase transformation in ZnO nanowires under tensile loading   总被引:1,自引:0,他引:1  
We predict a previously unknown phase transformation from wurtzite to a graphitelike (P6(3)/mmc) hexagonal structure in [0110]-oriented ZnO nanowires under uniaxial tensile loading. Molecular dynamics simulations and first principles calculations show that this structure corresponds to a distinct minimum on the enthalpy surfaces of ZnO for such loading conditions. This transformation is reversible with a low level of hysteretic dissipation of 0.16 J/m3 and, along with elastic stretching, endows the nanowires with the ability to recover pseudoelastic strains up to 15%.  相似文献   

19.
Molecular dynamics (MD) simulations are used to investigate the thermodynamic properties and structural changes of KCl spherical nanoparticles at various sizes (1064, 1736, 2800, 3648, 4224 and 5832 ions) upon heating. The melting temperature is dependent on both the size and shape of KCl models, and the behaviour of the first order phase transition is also found in the present work. The surface melting found here is different from the melting phenomena of KCl models or other alkali halides studied in the past. In the premelting stage, a mixed phase containing liquid and solid ions covers the surface of nanoparticles. The only peak of heat capacity spreads out a significant segment of temperature, probably exhibiting both heterogeneous melting on the surface and homogeneous melting in the core. The coexistence of two melting mechanisms, homogeneous and heterogeneous ones, in our model is unlike those considered previously. We also found that the critical Lindemann ratio of the KCl nanoparticle becomes much more stable when the size of the nanoparticle is of the order of thousands of ions. A picture of the structural evolution upon heating is studied in more detail via the radial distribution function (RDF) and coordination numbers. Our results are in a good agreement with previous MD simulations and experimental observations.  相似文献   

20.
Janani Sampath 《Molecular physics》2019,117(23-24):3642-3650
The leucine-lysine amphiphilic peptide LKα14 has been used to study fundamental driving forces in processes such as peptide-surface binding and biomineralization. Here, we employ molecular dynamics (MD) simulations in tandem with replica exchange metadynamics to probe the binding mechanism and thermodynamics of LKα14 on silica. We also investigate the effect that the nature of the silica surface – crystalline vs. amorphous, has on the binding properties and peptide-surface conformations. We find that water adsorbs differently on both surfaces; it forms a denser interfacial layer on the crystalline surface, compared to the amorphous surface. This causes the peptide to bind more strongly on the amorphous surface than the crystalline surface. Cluster analysis shows that the peptide adopts a helical conformation at both surfaces, with a greater distribution of states on the crystalline surface. Peptide binding is primarily through lysine interactions, in line with prior experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号