首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The use of nanotechnology in bioanalytical devices has special advantages in the detection of toxins of interest in food safety and environmental applications. The low levels to be detected and the small size of toxins justify the increasing number of publications dealing with electrochemical biosensors, due to their high sensitivity and design versatility. The incorporation of nanomaterials in their development has been exploited to further increase their sensitivity, providing simple and fast devices, with multiplexed capabilities. This paper gives an overview of the electrochemical biosensors that have incorporated carbon and metal nanomaterials in their configurations for the detection of toxins. Biosensing systems based on magnetic beads or integrated into microfluidics systems have also been considered because of their contribution to the development of compact analytical devices. The roles of these materials, the methods used for their incorporation in the biosensor configurations as well as the advantages they provide to the analyses are summarised.  相似文献   

2.
The improvement of medical care worldwide is one of the reasons for the increasing production of pharmaceutical products. Human medicines are affordable to a greater proportion of the world's population. But a significant amount of used pharmaceuticals can create problems--accessibility to high volume production pharmaceuticals contributes to an increased contamination in the environment and the possibility of adverse effects on humans and animals. Many of these substances and their metabolites end up in the soil, sediments, and sludge. Knowledge regarding the environmental occurrence of pharmaceutical products is increasing, but information in the peer-reviewed literature regarding the fate and effects of most pharmaceuticals is limited. One of the reasons for this lack of data is that, until now, there have been few analytical methods capable of detecting these compounds at the low levels, which might be expected in the environment. This review article covers recent developments in the analysis of pharmaceuticals in environmental solid matrices (including soil, sediments, and sludge). We will report applications of different solid sample extraction methods, and current advances in liquid chromatography coupled with mass spectrometry for detection and identification of selected drugs in sludge, soils, manure, and sediments.  相似文献   

3.
Reliable observation, detection and characterisation of polluted soil are of major concern in regions with military activities in order to prepare efficient decontamination. Flexible on-site analysis may be facilitated by biosensor devices. With use of fibre-optic evanescent field techniques, it has been shown that immunoaffinity reactions can be used to determine explosives sensitively. Besides antibodies as molecular recognition elements, high-affinity nucleic acids (aptamers) can be employed. Aptamers are synthetically generated and highly efficient binding molecules that can be derived for any ligand, including small organic molecules like drugs, explosives or derivatives thereof. In this paper we describe the development of specific aptamers detecting the explosives molecule TNT. The aptamers are used as a sensitive capture molecule in a fibre-optic biosensor. In addition, through the biosensor measurements the aptamers could be characterised. The advantages of the aptamer biosensor include its robustness, its ability to discriminate between different explosives molecules while being insensitive to other chemical entities in natural soil and its potential to be incorporated into a portable device. Results can be obtained within minutes. The measurement is equally useful for soil that has been contaminated for a long time and for urgent hazardous spills.  相似文献   

4.
The applicability of an enzyme biosensor based on pH-ISFETs for direct determination of total glycoalkaloids content in real potato samples, without any pre-treatment, is shown. The results of determination of the total glycoalkaloids concentrations in potato samples from different experimental varieties obtained by the biosensor are well correlated with the analogous data obtained by the HPLC method with standard complex sample pre-treatment procedure. The detection of total glycoalkaloids content by biosensors is reproducible, the relative standard deviation was around 3%. The dependence of total glycoalkaloids content on various parts of the potato tuber and their size, different growing area has been shown using the biosensor developed.The method based on biosensors is cheap, easy to operate and requires a shorter analysis time than the one needed using traditional methods for glycoalkaloids determination. The biosensor can operate directly on potato juice, or even directly on a suspension of potato or plant material. It can provide a way to save time and costs, with a possibility of taking rapid assessment of total glycoalkaloids content in a wide variety of potato cultivars. Furthermore the operational and storage stability of this biosensor are quite good with a drift lower than 1% per day and response being stable for more than 3 months.  相似文献   

5.
A solid-phase fluorescent biosensor for the determination of phenolic compounds (simple substituted phenols and catecholamines) and peroxides has been developed. The biosensor has a simple construction and the analytical signal is measured directly in a biosensitive layer {peroxidase-chitosan} on the sensor surface. This approach allowed analyzing samples with complex matrices (including water-insoluble samples and nontransparent solutions) without their preliminary pretreatment. Two novel fluorescent indicator reactions for the determination of the above-mentioned analytes in wide concentration ranges (from nmol l?1 to mm l?1) which provided an analytical signal registration on a solid phase were proposed. The developed sensor was applied successfully for the analysis of urine, cosmetics, pharmaceuticals preparations, etc.  相似文献   

6.
《Analytical letters》2012,45(15):2399-2410
A new method for the determination of norfloxacin by flow injection analysis based on photoinduced chemiluminescence detection is proposed. We have selected the peroxyoxalate (PO) reaction based on the possibility of detecting fluorescent products derived from a photochemically induced decomposition of norfloxacin, observing high signal when the derivative participates in the reaction. A FIA device, with two-injection valves for the introduction of both the PO and the photodecomposed analyte solutions in the flow system, has been used, avoiding the problems arising from the use of organic solvents. The method was applied to the monitoring of norfloxacin in pharmaceuticals.  相似文献   

7.
Sung-Rok Hong  Suhee Hong 《Talanta》2010,82(3):899-266
Viral haemorrhagic septicaemia (VHS) is one of the most serious viral diseases damaging both fresh and marine fish species. VHS caused by VHSV and diagnosis of VHSV has been dependent on the conventional methods, such as cell culture and RT-PCR, which takes a few days or several hours. This study demonstrates a rapid and sensitive QCM biosensor for diagnosis of VHSV infection in fish. The QCM biosensor was developed to detect a main viral RNA encoding G protein in VHSV using the specific DNA probe. To maximize the sensitivity of the biosensor, we prepared three different DNA probes which modified 3′ end of DNA by thiol, amine, or biotin and compared three different immobilisation methods on quartz surface coated with gold: immobilisation of thiol labelled probe DNA on naked gold surface, immobilisation of amino labelled probe DNA on gold surface prepared as carboxyl chip using MPA followed by EDC/NHS activation, and immobilisation of biotin labelled probe DNA on gold surface after immobilising avidin on carboxyl chip prior to biotin. As a result, immobilisation method using avidin-biotin interaction was most efficient to immobilise probe DNA and to detect target DNA. The QCM biosensor system using biotinylated probe DNA was stable enough to withstand 32 times of repeated regenerations and the detection limit was 0.0016 μM. Diagnosis using the QCM biosensor system was more sensitive and much faster than a conventional RT-PCR analysis in detecting the viral RNA.  相似文献   

8.
A review of studies on the determination of heparin in various samples (pharmaceuticals, biological fluids) by electrochemical methods of analysis in 1976–2014 is presented. Heparin is most often determined in pharmaceuticals by polarography using cationic dyes, and in biological samples, by differential pulse methods on non-stationary mercury electrodes. Works on the creation of heparin-selective electrodes coated with a polyvinylchloride membrane with quarternary ammonium salts are most promising; they can, probably, be used for the creation of portable devices for the determination of heparin.  相似文献   

9.
A wealth of research has been available discussing nanogap devices for detecting very small quantities of biomolecules by observing their electrical behavior generally performed in dry conditions. We report that a gold nanogapped electrode with tunable gap length for ultra-sensitive detection of streptavidin based on electrochemical impedance technique. The gold nanogap is fabricated using simple monolayer film deposition and in-situ growth of gold nanoparticles in a traditional interdigitated array (IDA) microelectrode. The electrochemical impedance biosensor with a 25-nm nanogap is found to be ultra-sensitive to the specific binding of streptavidin to biotin. The binding of the streptavidin hinder the electron transfer between two electrodes, resulting in a large increase in electron-transfer resistance (Ret) for operating the impedance. A linear relation between the relative Ret and the logarithmic value of streptavidin concentration is observed in the concentration range from 1 pM (picomolar) to 100 nM (nanomolar). The lowest detectable concentration actually measured reaches 1 pM. We believe that such an electrochemical impedance nanogap biosensor provides a useful approach towards biomolecular detection that could be extended to a number of other systems.  相似文献   

10.
There is growing interest in the detection of bacteria in consumables, for example, in the food and water sectors. In this study, the aim was to produce a polymer-based bacteria biosensor via ROMP (ring opening metathesis polymerization). In the first part of the study, block and random copolymers were synthesized, and their biocidal activities were tested on the glass surface. Interdigitated electrode arrays coated with the polymers possessing the highest activity were used to screen the affinity towards different bacterial strains by monitoring impedance variations in real-time. The polymer-coated electrode could detect gram-positive and gram-negative bacteria strains at a concentration of 107 cfu/mL. The results show that ROMP-based polymer offers bacterial detection and can be used in developing biosensor devices for efficiently detecting pathogenic bacteria.  相似文献   

11.
The introduction of fluorine into the structure of pharmaceuticals has been an effective strategy for tuning their pharmacodynamic properties, with more than 40 new drugs entering the market in the last 15 years. In this context, 19F NMR spectroscopy can be viewed as a useful method for investigating the host–guest chemistry of pharmaceuticals in nanosized drug‐delivery systems. Although the interest in confined crystallization, nanosized devices, and porous catalysts is gradually increasing, understanding of the complex phase behavior of organic molecules confined within nanochambers or nanoreactors is still lacking. Using 19F magic‐angle‐spinning NMR spectroscopy, we obtained detailed mechanistic insight into the crystallization of flufenamic acid (FFA) in a confined environment of mesoporous silica materials with different pore diameters (3.2–29 nm), providing direct experimental evidence for the formation of a molecular‐liquid‐like layer besides crystalline confined FFA form I.  相似文献   

12.
Electronic engineering has played a significant role in biosensor design, at the primary transducer level, since the appearance of chemically sensitive field-effect transistors (CHEMFETs) in the seventies. The early promise of CHEMFETs could not easily be carried through into more advanced biosensors, e.g., immunosensors, not have CHEMFETs paved the way for a range of non-sensing bioelectronic devices. However, collaboration of electronic engineers and biosensor designers, at a level more fundamental than simple signal-processing instrumentation, was initiated. Such collaborations have led to the appearance of several very promising opto-electronic biosensors and in the use of micro-electronic fabrication techniques in, otherwise, conventional biosensors. It is now possible to foresee the wide use of integrated micro-optical biosensors in medicine and the possibility that integrated fault-tolerant biosensor arrays may start to address some of the severe problems of using biosensors in process control.  相似文献   

13.
Carbon nanotubes (CNTs) revealing metallic or semiconductive properties depending on the folding modes of the nanotube walls represent a novel class of nanowires. Different methods to separate semiconductive CNTs from conductive CNTs have been developed, and synthetic strategies to chemically modify the side walls or tube ends by molecular or biomolecular components have been reported. Tailoring hybrid systems consisting of CNTs and biomolecules (proteins and DNA) has rapidly expanded and attracted substantial research effort. The integration of biomaterials with CNTs enables the use of the hybrid systems as active field-effect transistors or biosensor devices (enzyme electrodes, immunosensors, or DNA sensors). Also, the integration of CNTs with biomolecules has allowed the generation of complex nanostructures and nanocircuitry of controlled properties and functions. The rapid progress in this interdisciplinary field of CNT-based nanobioelectronics and nanobiotechnology is reviewed by summarizing the present scientific accomplishments, and addressing the future goals and perspectives of the area.  相似文献   

14.
The surface properties of GaPO4 have been studied by secondary ion mass spectrometry, X-ray photoelectron spectroscopy and electromagnetic acoustic wave excitation in order to explore the potential of this relatively new piezoelectric material as a biosensor. The X-ray photoelectron spectrum of the substrate shows a Ga-rich surface (Ga:P = 1.4), while the negative secondary ion mass spectrum is similar to that of other phosphates, with PO3- and PO2- being the main fragments derived from the substrate. Surface analysis reveals that the linker protein for biotinylated moieties, neutravidin, is both readily chemisorbed to bare gallium phosphate at pH 7.5 and attached to p-hydroxy benzaldehyde-treated devices, establishing the possibility to exploit the surface chemistry of the phosphate for the fabrication of an electrode-free acoustic wave biosensor. Preliminary results regarding the detection of the adsorption of neutravidin with an electromagnetic field-excited GaPO4 device incorporated in a FIA configuration showed comparable results with those obtained with a quartz-sensor equivalent. The frequency shift for the adsorbed protein layer at the device fundamental frequency was 200 Hz and the noise was routinely around 13 Hz. The possibility to use the electrodeless acoustic GaPO4 device at higher harmonics in the liquid phase has also been confirmed.  相似文献   

15.
New developments and applications of selective biosensors specifically designed for clinical assay and invasive biological analysis are revolutionizing chemical sensing. One area which has remained largely unaddressed consists of the chemical sensing systems found in nature, which offer splendid examples of efficient and sensitive devices from which much can be learned. Efforts to devise lipid-based biosensors, which are very limited models of the highly refined natural system, have recently attracted much attention and financing. The superior sensing characteristics demonstrated by the prototype systems tested to date indicate that this technology may provide the basis for the ultimate artificial biosensor of the future.  相似文献   

16.
Ambient ionization mass spectrometry: a tutorial   总被引:4,自引:0,他引:4  
Ambient ionization is a set of mass spectrometric ionization techniques performed under ambient conditions that allows the direct analysis of sample surfaces with little or no sample pretreatment. Using combinations of different types of sample introduction systems and ionization methods, several novel techniques have been developed over the last few years with many applications (e.g., food safety screening; detection of pharmaceuticals and drug abuse; monitoring of environmental pollutants; detection of explosives for antiterrorism and forensics; characterization of biological compounds for proteomics and metabolomics; molecular imaging analysis; and monitoring chemical and biochemical reactions). Electrospray ionization and atmospheric pressure chemical ionization are the two main ionization principles most commonly used in ambient ionization mass spectrometry. This tutorial paper provides a review of the publications related to ambient ionization techniques. We describe and compare the underlying principles of operation, ionization processes, detecting mass ranges, sensitivity, and representative applications of these techniques.  相似文献   

17.
With recent advances in surface chemistry, microfluidics, and data analysis, there are ever increasing reports of array-based methods for detecting and quantifying multiple targets. However, only a few systems have been described that require minimal preparation of complex samples and possess a means of quantitatively assessing matrix effects. The NRL Array Biosensor has been developed with the goal of rapid and sensitive detection of multiple targets from multiple samples analyzed simultaneously. A key characteristic of this system is its two-dimensional configuration, which allows controls and standards to be analyzed in parallel with unknowns. Although the majority of our work has focused on instrument automation and immunoassay development, we have recently initiated efforts to utilize alternative recognition molecules, such as peptides and sugars, for detection of a wider variety of targets. The array biosensor has demonstrated utility for a variety of applications, including food safety, disease diagnosis, monitoring immune response, and homeland security, and is presently being transitioned to the commercial sector for manufacturing.  相似文献   

18.
Polymers are crucial component for modern sensor devices. However, comprehensive research on polymer sensor technology is still going strong. Molecular imprinted membrane (MIM) is a great design that demonstrates acceptable recognition ability when integrated with a sensing transducer. Generally, the detection technique that has been widely and sparingly used for pesticide is mass spectrometry merged with gas and/or liquid chromatography. Nevertheless, this review focuses not on these common methods but on the specific methodology of MIM biosensor for the analysis of pesticides. Finally, the transduction schemes of the MIM sensor are reviewed. The interest of this article is sketched to the trends and challenges present in this field of study.  相似文献   

19.
Biosensors are devices which combine a biochemical recognition element with a physical transducer. There are various types of biosensors, including electrochemical, acoustical, and optical sensors. Biosensors are used for medical applications and for environmental testing. Although biosensors are not commonly used for food microbial analysis, they have great potential for the detection of microbial pathogens and their toxins in food. They enable fast or real-time detection, portability, and multipathogen detection for both field and laboratory analysis. Several applications have been developed for microbial analysis of food pathogens, including E. coli O157:H7, Staphylococcus aureus, Salmonella, and Listeria monocytogenes, as well as various microbial toxins such as staphylococcal enterotoxins and mycotoxins. Biosensors have several potential advantages over other methods of analysis, including sensitivity in the range of ng/mL for microbial toxins and <100 colony-forming units/mL for bacteria. Fast or real-time detection can provide almost immediate interactive information about the sample tested, enabling users to take corrective measures before consumption or further contamination can occur. Miniaturization of biosensors enables biosensor integration into various food production equipment and machinery. Potential uses of biosensors for food microbiology include online process microbial monitoring to provide real-time information in food production and analysis of microbial pathogens and their toxins in finished food. Biosensors can also be integrated into Hazard Analysis and Critical Control Point programs, enabling critical microbial analysis of the entire food manufacturing process. In this review, the main biosensor approaches, technologies, instrumentation, and applications for food microbial analysis are described.  相似文献   

20.

Abstract  

As a result of the deleterious effects of mycotoxins on human and animal health, and the consequently increasing stringency in the determination of food contamination levels, many researchers have focused their efforts on developing new devices for the detection of these compounds. Biosensors merit special mention due to their sensitivity, accuracy, cost-effectiveness and simplicity, not only of the construction, but also of the sample pre-treatment, if necessary, and the measurement step. Furthermore, biosensor arrays offer additional advantages, such as the possibility to measure multiple samples and provide multi-mycotoxin profiles in one assay. In this case, apart from shortening the analysis time, accuracy is improved by the assessment of matrix interferences and synergistic effects among mycotoxins. Biosensors and arrays for mycotoxins are thus promising biotechnological tools for mycotoxin detection in food.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号