首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The influence of protein concentration and order of addition relative to homogenization (before or after) on the extent of droplet flocculation in heat-treated oil-in-water emulsions stabilized by a globular protein were examined using laser diffraction. n-Hexadecane (10 wt%) oil-in-water emulsions (pH 7, 150 mM NaCl) stabilized by beta-lactoglobulin (beta-Lg) were prepared by three methods: (1) 4 mg/mL beta-Lg added before homogenization; (2) 4 mg/mL beta-Lg added before homogenization and 6 mg/mL beta-Lg added after homogenization; (3) 10 mg/mL beta-Lg added before homogenization. The emulsions were then subjected to various isothermal heat treatments (30-95 degrees C for 20 min), with the 150 mM NaCl being added either before or after heating. Emulsion 1 contained little nonadsorbed protein and exhibited extensive droplet aggregation at all temperatures, which was attributed to the fact that the droplets had a high surface hydrophobicity, e.g., due to exposed oil or extensive protein surface denaturation. Emulsions 2 and 3 contained a significant fraction of nonadsorbed beta-Lg. When the NaCl was added before heating, these emulsions were relatively stable to droplet flocculation below a critical holding temperature (75 and 60 degrees C, respectively) but showed extensive flocculation above this temperature. The stability at low temperatures was attributed to the droplets having a relatively low surface hydrophobicity, e.g., due to complete saturation of the droplet surface with protein or due to more limited surface denaturation. The instability at high temperatures was attributed to thermal denaturation of the adsorbed and nonadsorbed proteins leading to increased hydrophobic interactions between droplets. When the salt was added to Emulsions 2 and 3 after heating, little droplet flocculation was observed at high temperatures, which was attributed to the dominance of intra-membrane over inter-membrane protein-protein interactions. Our data suggests that protein concentration and order of addition have a strong influence on the flocculation stability of protein-stabilized emulsions, which has important implications for the formulation and production of many emulsion-based products.  相似文献   

2.
The influence of surface and thermal denaturation of adsorbed beta-lactoglobulin (beta-Lg) on the flocculation of hydrocarbon oil droplets was measured at pH 3 and compared with that at pH 7. Oil-in-water emulsions (5 wt % n-hexadecane, 0.5 wt % beta-Lg, pH 3.0) were prepared that contained different levels of salt (0-150 mM NaCl) added immediately after homogenization. The mean particle diameter (d43) and particle size distribution of diluted emulsions were measured by laser diffraction when they were either (i) stored at 30 degrees C for 48 h or (ii) subjected to different thermal treatments (30-95 degrees C for 20 min). In the absence of salt, little droplet flocculation was observed at pH 3 or 7 because of the strong electrostatic repulsion between the droplets. In the presence of 150 mM NaCl, a progressive increase in mean particle size with time was observed in pH 7 emulsions during storage at 30 degrees C, but no significant change in mean particle diameter with time (d43 approximately 1.4 +/- 0.2 microm) was observed in the pH 3 emulsions. Droplet aggregation became more extensive in pH 7 emulsions containing salt (added before thermal processing) when they were heated above 70 degrees C, which was attributed to thermal denaturation of adsorbed beta-Lg leading to interdroplet disulfide bond formation. In contrast, the mean particle size decreased and the creaming stability improved when pH 3 emulsions were heated above 70 degrees C. These results suggest that the droplets in the pH 3 emulsions were weakly flocculated at temperatures below the thermal denaturation temperature of beta-Lg (T < 70 degrees C) but that flocs did not form so readily above this temperature, which was attributed to a reduction in droplet surface hydrophobicity due to protein conformational changes. The most likely explanation for the difference in behavior of the emulsions is that disulfide bond formation occurs much more readily at pH 7 than at pH 3.  相似文献   

3.
The creaming and rheology of oil-in-water emulsions (30 vol% n-tetradecane, pH 6.8) stabilized by a mixture of commercial sodium caseinate and the non-ionic emulsifier polyoxyethylene sorbitan monolaurate (Tween 20) has been investigated at 21 degrees C. The presence of sufficient Tween 20 to displace most of the protein from the emulsion droplet surface leads to greatly enhanced emulsion creaming (and strongly non-Newtonian rheology) which is indicative of depletion flocculation by nonadsorbed surface-active material (protein and emulsifier). In emulsions containing a constant amount of surface-active material, the replacement of a very small fraction of Tween 20 by caseinate in a stable pure Tween 20 emulsion leads to enhanced creaming for a small fraction of the droplets, and this fraction increases with increasing replacement of emulsifier by protein. This behavior is probably due to depletion flocculation, although an alternative bridging mechanism is also a possibility. The overall stability of these sets of emulsions can be represented in terms of a global stability diagram containing regions of bridging flocculation and coalescence (low content of surface-active material), stability (intermediate content), and depletion flocculation (high content). Copyright 1999 Academic Press.  相似文献   

4.
The influence of thermal processing on droplet flocculation in oil-in-water emulsions stabilized by either beta-lactoglobulin (primary emulsions) or beta-lactoglobulin-iota-carrageenan (secondary emulsions) at pH 6 has been investigated. In the absence of salt, the zeta-potential of the primary emulsion was less negative (-40 mV) than that of the secondary emulsion (-55 mV) due to adsorption of anionic iota-carrageenan to the anionic beta-Lg-coated droplet surfaces. The zeta-potential and mean diameter (d(43) approximately 0.3 microm) of droplets in primary and secondary emulsions did not change after storage at temperatures ranging from 30 to 90 degrees C. In the presence of 150 mM NaCl, the zeta-potential of the primary emulsion was much less negative (-27 mV) than that of the secondary emulsion (-50 mV), suggesting that the latter was less influenced by electrostatic screening effects. The zeta-potential of the primary emulsions did not change after storage at elevated temperatures (30-90 degrees C). The zeta-potential of the secondary emulsions became less negative, and the aqueous phase iota-carrageenan concentration increased at storage temperatures exceeding 50 degrees C, indicating iota-carrageenan desorbed from the beta-Lg-coated droplets. In the primary emulsions, appreciable droplet flocculation (d(43) approximately 8 microm) occurred at temperatures below the thermal denaturation temperature (T(m)) of the adsorbed proteins due to surface denaturation, while more extensive flocculation (d(43) > 20 microm) occurred above T(m) due to thermal denaturation. In the secondary emulsions, the extent of droplet flocculation below T(m) was reduced substantially (d(43) approximately 0.8 microm), which was attributed to the ability of adsorbed carrageenan to increase droplet-droplet repulsion. However, extensive droplet flocculation was observed above T(m) because carrageenan desorbed from the droplet surfaces. Differential scanning calorimetry showed that iota-carrageenan and beta-Lg interacted strongly in aqueous solutions containing 0 mM NaCl, but not in those containing 150 mM NaCl, presumably because salt weakened the electrostatic attraction between the molecules.  相似文献   

5.
The extent and kinetics of droplet flocculation in emulsions was studied using ultrasonic attenuation spectroscopy. Flocculation in 10 wt.% soybean oil-in-water emulsions, stabilized by whey protein isolate (0.75 wt.%), was controlled by adjusting the pH (between 3 and 7) to alter the electrostatic interactions between the droplets. Droplet flocculation was then monitored by measuring the ultrasonic attenuation spectra (1–150 MHz) and by using laser light scattering. Extensive droplet flocculation was observed in the emulsions around the isoelectric point of the proteins (pH 3.5–5.5). Flocculation caused an appreciable change in the ultrasonic attenuation spectra, which was in good qualitative agreement with a theory recently developed to describe the ultrasonic properties of flocculated emulsions. Our results indicate that ultrasonic spectroscopy is a powerful tool for monitoring both the extent and kinetics of flocculation in concentrated emulsions in situ.  相似文献   

6.
We have investigated the combined effect of ionic calcium and ethanol on the visual creaming behavior and rheology of sodium caseinate-stabilized emulsions (4 wt% protein, 30 vol% oil, pH 6.8, mean droplet diameter 0.4 microm). A range of ionic calcium concentrations, expressed as a calcium/caseinate molar ratio R, was adjusted prior to homogenization and varying concentrations of ethanol were added shortly after homogenization. A stability map was produced on the basis of visual creaming behavior over a minimum period of 8 h for different calcium/caseinate/ethanol emulsion compositions. A single narrow stable (noncreaming) region was identified, indicating limited cooperation between calcium ions and ethanol. The shear-thinning behavior of the caseinate-stabilized emulsions is typical of systems undergoing depletion flocculation. Addition of calcium ions and/or ethanol was found to lead to a pronounced reduction in viscosity and the onset of Newtonian flow. The state of aggregation was correlated with emulsion microstructure from confocal laser scanning microscopy. Time-dependent rheology (18 h) with a density-matched oil phase (1-bromohexadecane) revealed that the visually stable emulsions were time-independent low-viscosity fluids. Surface coverage data showed that increasing amounts of caseinate were associated with the oil-water interface with increasing R and ethanol content. A decrease in free calcium ions in the aqueous phase with moderate increases in R and ethanol content was observed, which is consistent with greater calcium-caseinate binding (aggregation). Ostwald ripening occurred at the high-ethanol emulsion compositions that were stable to depletion flocculation. While the coarsening rate was low, this can account for the cream plug formation observed during gravity creaming experiments. The caseinate emulsion with no ionic calcium or ethanol exhibits depletion flocculation from excess nonadsorbed caseinate submicelles. Addition of calcium ions reduces the submicelle number density via specific calcium-binding in the aqueous phase (fewer, larger calcium-caseinate aggregates) and at the droplet surface (increased surface coverage). Nonspecific ethanol-induced (calcium-dependent) caseinate submicelle aggregation in the bulk phase and on the droplet surface (increased surface coverage) culminates in a reduction in the number density of caseinate submicelles. A narrow window of inhibition of depletion flocculation occurs in systems containing both calcium ions and ethanol, both species combining to aggregate the protein and so reduce the density of free submicelles.  相似文献   

7.
The influence of environmental conditions (pH, NaCl, CaCl2, and temperature) on the properties and stability of oil-in-water (O/W) emulsions containing oil droplets surrounded by one-, two-, or three-layer interfacial membranes has been investigated. Three oil-in-water emulsions were prepared with the same droplet concentration and buffer (5 wt % corn oil, 5 mM phosphate buffer, pH 6) but with different biopolymers: (i) primary emulsion: 0.5 wt % beta-Lg; (ii) secondary emulsion: 0.5 wt % beta-Lg, 0.1 wt % iota-carrageenan; (iii) tertiary emulsion: 0.5 wt % beta-Lg, 0.1 wt % iota-carrageenan, 0-2 wt % gelatin. The secondary and tertiary emulsions were prepared by electrostatic deposition of the charged biopolymers onto the surfaces of the oil droplets so as to form two- and three-layer interfacial membranes, respectively. The stability of the emulsions to pH (3-8), sodium chloride (0-500 mM), calcium chloride (0-12 mM), and thermal processing (30-90 degrees C) was determined. We found that multilayer emulsions had better stability to droplet aggregation than single-layer emulsions under certain environmental conditions and that one or more of the biopolymer layers could be made to desorb from the droplet surfaces in response to specific environmental changes (e.g., high salt or high temperature). These results suggest that the interfacial engineering technology used in this study could lead to the creation of food emulsions with improved stability to environmental stresses or to emulsions with triggered release characteristics.  相似文献   

8.
An oil-in-water emulsion (5 wt% corn oil, 0.5 wt% beta-lactoglobulin (beta-Lg), 0.1 wt% iota-carrageenan, 5 mM phosphate buffer, pH 6.0) containing anionic droplets stabilized by interfacial membranes comprising of beta-lactoglobulin and iota-carrageenan was produced using a two-stage process. A primary emulsion containing anionic beta-Lg coated droplets was prepared by homogenizing oil and emulsifier solution together using a high-pressure valve homogenizer. A secondary emulsion containing beta-Lg-iota-carrageenan coated droplets was formed by mixing the primary emulsion with an aqueous iota-carrageenan solution. The stability of primary and secondary emulsions to sodium chloride (0-500 mM), calcium chloride (0-12 mM), and thermal processing (30-90 degrees C) were analyzed using zeta-potential, particle size and creaming stability measurements. The secondary emulsion had better stability to droplet aggregation than the primary emulsion at NaCl 相似文献   

9.
The influence of various emulsifier types (anionic, nonionic, and zwitterionic) on the mean particle size, transmembrane flux, and membrane fouling in repeated membrane homogenization using a Shirasu porous glass (SPG) membrane has been investigated. Oil-in-water (O/W) emulsions (40 wt % corn oil stabilized by 0.06-2 wt % sodium dodecyl sulfate (SDS) or 0.1-2 wt % Tween 20 at pH 3 or 0.5-2 wt % beta-lactoglobulin (beta-Lg) at pH 7) were prepared by passing coarsely emulsified feed mixtures five times through the membrane with a mean pore size of 8.0 microm under the transmembrane pressure of 100 kPa. The flux increased as the number of passes increased, tending to a maximum limiting value. The maximum flux for the Tween 20-stabilized emulsions (5-47 m3.m(-2).h(-1)) was smaller than that for the SDS-stabilized emulsions (29-60 m3.m(-2).h(-1)) because less energy was needed for the disruption of a SDS-stabilized droplet due to the lower interfacial tension. The mean particle size after five passes was 4.1-6.8 and 6.4-8.7 mum for 0.1-2 wt % SDS and Tween 20, respectively. The flux in the presence of beta-Lg was much smaller than that in the presence of SDS and Tween 20, which was a consequence of more pronounced membrane fouling, due to the protein adsorption to the membrane surface. After five passes through the membrane, the fouling resistance in the presence of 2 wt % beta-Lg (1.1 x 10(10) 1/m) was 2 orders of magnitude higher than that for 0.5 wt % Tween 20 and an order of magnitude higher than the membrane resistance. If a clean membrane was used in the fifth pass, a 2-fold reduction of the fouling resistance was observed.  相似文献   

10.
The influence of sodium dodecyl sulfate (SDS) on the flocculation of droplets in 20 wt.% soybean oil-in-water emulsions stabilized by whey protein isolate (WPI) was investigated by light scattering, rheology and creaming measurements. The SDS concentrations used were low enough to prevent depletion flocculation by surfactant micelles and extensive protein displacement. In the absence of SDS, emulsions were prone to droplet flocculation near the isoelectric point of the proteins (4<pH<6), but were stable at a higher and lower pH. Flocculation led to an increase in emulsion viscosity, pronounced shear thinning behavior and accelerated creaming. When the surfactant-to-protein molar ratio was increased from 0 to 10, the emulsion instability range shifted to lower pH values due to binding of the negatively charged SDS molecules to the droplets. Our results indicate that the physicochemical properties of protein-stabilized emulsions can be modified by utilizing surfactant–protein interactions.  相似文献   

11.
The objective of this study was to establish the optimum conditions for preparing stable oil-in-water emulsions containing droplets surrounded by surfactant-chitosan layers. A primary emulsion containing small droplets (d32 approximately = 0.3 microm) was prepared by homogenizing 20 wt% corn oil with 80 wt% emulsifier solution (20 mM SDS, 100 mM acetate buffer, pH 3) using a high-pressure valve homogenizer. The primary emulsion was diluted with chitosan solutions to produce secondary emulsions with a range of oil and chitosan concentrations (0.5-10 wt% corn oil, 0-1 wt% chitosan, pH 3). The secondary emulsions were sonicated to help disrupt any droplet aggregates formed during the mixing process. The electrical charge, particle size, and amount of free chitosan in the emulsions were then measured. The droplet charge changed from negative to positive as the amount of chitosan in the emulsions was increased, reaching a relatively constant value (approximately +50 mV) above a critical chitosan concentration (C(Sat)), which indicated that saturation of the droplet surfaces with chitosan occurred. Extremely large droplet aggregates were formed at chitosan concentrations below C(Sat), but stable emulsions could be formed above C(Sat) provided the droplet concentration was not high enough for depletion flocculation to occur. Interestingly, we found that stable multilayer emulsions could also be formed by mixing chitosan with an emulsion stabilized by a nonionic surfactant (Tween 20) due to the fact the initial droplets had some negative charge. The information obtained from this study is useful for preparing emulsions stabilized by multilayer interfacial layers.  相似文献   

12.
The stability of fine sodium caseinate emulsions (1 wt.% protein, 25 vol.% n-tetradecane, 20 mM imidazole, pH 7) containing various concentrations of calcium chloride has been investigated under perikinetic and orthokinetic conditions by measuring time-dependent changes in droplet-size distribution. Under quiescent storage conditions at 20°C, samples containing at least 10 mM ionic calcium added after emulsification were found to exhibit an increasing average droplet size with time and a developing bimodal droplet-size distribution. Under turbulent conditions of intense shearing, these same emulsions exhibited time-dependent flocculation and coalescence. This interpretation was confirmed by light microscopy. Emulsions prepared with up to 6 mM Ca2+ present during emulsification were stable in the presence or absence of flow, but satisfactory emulsions could not be prepared containing more than 6 mM ionic calcium. The results show that the emulsion stability is sensitive to whether the calcium ion content is adjusted before or after homogenization.  相似文献   

13.
The knowledge on the factors affecting the heat-induced physicochemical changes of milk proteins and milk protein stabilized oil-in-water emulsions has been advanced for the last decade. Most of the studies have emphasized on the understanding of how milk-protein-stabilized droplets and the non-adsorbed proteins determine the physicochemical and rheological properties of protein-concentrated dairy colloids. The physical stability of concentrated protein-stabilized emulsions (i.e., against creaming or phase separation/gelation after heat treatment) can be modulated by carefully controlling the colloidal properties of the protein-stabilized droplets and the non-adsorbed proteins in the aqueous phase. This article focusses on the review of the physical stability of concentrated milk protein-stabilized oil-in-water emulsions as influenced by physicochemical factors, interparticle interactions (i.e., protein–protein, and droplet–droplet interactions) and processing conditions. Emphasis has been given to the recent advances in the formation, structure and physical stability of oil-in-water emulsions prepared with all types of milk proteins, reviewing in particular the impact of pre- and post-homogenization heat treatments. In addition, the importance of common components found in the continuous phase of heat-treated nutritional emulsions that can promote aggregation (polymers, sugars, minerals) will be highlighted. Finally, the routes of manipulating the steric stabilization of these emulsions to control heat-induced aggregation—through protein–surfactant, protein–protein, protein–polysaccharide interactions and through the incorporation of protein based colloidal particles—are reviewed.  相似文献   

14.
15.
Oil-in-water emulsions of slightly soluble oils such as tetralin prepared by high-pressure homogenization and stabilized by sodium dodecyl sulfate undergo depletion flocculation induced by an initially polydisperse droplet size distribution. The smaller droplets flocculate the larger ones; the flocculation can be reversed by gentle sonication. After aging, the flocs disappear because the smaller droplets dissolve through Ostwald ripening. These effects were observed by electroacoustic measurements, supplemented by light scattering.  相似文献   

16.
The influence of droplet flocculation on the creaming stability of monodisperse n-hexadecane oil-in-water emulsions was studied. The creaming velocity of emulsions with different droplet radii (0.43 and 0.86 μm), droplet concentrations (1-67 vol%), and sodium dodecyl sulfate (SDS) concentrations (7-80 mM) were measured. Depletion flocculation was observed in the emulsions when the aqueous phase SDS concentration exceeded a particular level ( approximately 40 mM for 0.43-μm droplets and approximately 15 mM for 0.86-μm droplets). Creaming was monitored by measuring the back-scattered light from an emulsion as a function of its height. The creaming velocity increased with increasing flocculation and decreased with increasing droplet concentration. These results have important implications for the formulation of emulsion-based materials. Copyright 2000 Academic Press.  相似文献   

17.
This paper describes the most relevant issues associated with the development of a technology; the formation of highly concentrated bitumen-in-water emulsions. Viscosity values for bitumen-in-water emulsions, containing between 70 and 85% (v/v) of bitumen, have been found to be several order of magnitude lower than the viscosity of the hydrocarbon itself. Thus, these emulsions, have potential applications in the processes of production, transportation, handling and commercialization of these extremely highly viscous hydrocarbons. The emulsions, the properties of which are discussed in this paper, were stabilized with mixtures of nonionic and natural surfactants (1,2) and formed using the HIPR (high internal phase ratio) technique (3). Information on the conditions required to produce emulsions with very narrow droplet diameter distributions is given. Results indicate that the mean droplet diameter, the droplet diameter distribution, and the bitumen volume fraction, significantly modify the rheological behavior. Emulsion stability was measured by following changes in the mean droplet diameter and in the rheological parameters with storage time.  相似文献   

18.
To investigate the emulsifying properties and adsorption behaviour of high molecular amphiphilic substances such as proteins, it is important to maintain the native status of the used samples. The new method of micro porous glass (MPG) emulsification could offer an opportunity to do this because of the low shear forces. The oil-in-water emulsions were produced by dispersing the hydrophobic phase (liquid butter fat or sunflower oil) through the MPG of different average pore diameters (dp=0.2 or 0.5 μm) into the flowing continuous phase containing the milk proteins (from reconstituted skim milk and buttermilk). The emulsions were characterised by particle size distribution, creaming behaviour and protein adsorption at the hydrophobic phase. The particle size distribution of protein-stabilised MPG emulsions is determined by the pore size of MPG, the velocity of continuous phase (or wall shear stress σw) and the transmembrane pressure. A high velocity of =2 m s−1 (σw=13.4 Pa) and low pressure (pressure of disperse phase slightly exceeded the critical pressure ΔpTM=4.5 bar of 0.2 μm-MPG) led to the smallest droplet diameter. As a consequence of average droplet diameters of d43>3.5 μm creaming was observed without centrifugation in all MPG emulsions after 24 h, but no coalescence of the oil droplets occurred. The study of protein adsorption showed that the MPG emulsification at low shear forces resulted in lower protein load values (2.5±0.5 mg m−2) than pressure emulsification (11.5±1.0 mg m−2). In addition, the various emulsification conditions (MPG or pressure homogenization) led to differences in the relative proportions of casein fractions, whey proteins and milk fat globule membranes (MFGM) at the fat globule surfaces.  相似文献   

19.
The stability of poly(dimethylsiloxane) (PDMS) oil-in-water emulsions has been investigated in the presence of added NaCl as well as in the presence of added surfactant. The emulsions were prepared using a combination of nonionic (C(x)E(y), x and y represent the number of methylene (C) and ethylene oxide (E) groups, respectively) and cationic (quarternary alkylammonium) surfactants. The droplets were observed to exhibit weak flocculation in the presence of high NaCl concentration (1 M). Phase separation and optical microscopic observations revealed that the principal mechanism for emulsion destabilization at high salt concentration was coalescence, which was accelerated at elevated temperature (50 degrees C). The effective coalescence rate for diluted emulsions was investigated using photon correlation spectroscopy. The small effective Hamaker constant for PDMS is the primary reason for the slow rate of coalescence observed for the emulsions at neutral pH in the presence of NaCl. The stability of PDMS emulsions to flocculation is qualitatively similar to that reported for low Hamaker constant dispersions (e.g., microgel particles). Addition of cationic surfactants (cetyltrimethylammonium chloride and dodecyl dimethylbenzylammonium chloride) to the negatively charged droplets after preparation was shown to decrease the emulsion stability once the surfactant concentration exceeded the CMC. Electrophoretic mobility measurements showed that added cationic surfactant changed the sign of the droplet charge from negative to positive at concentrations well below the CMC. Charged micelles of the same sign as the droplets are electrostatically excluded from close approach to the droplet surface within a distance (varepsilon) which results in depletion flocculation. Copyright 2000 Academic Press.  相似文献   

20.
The influence of electrostatically-induced heteroaggregation of oppositely charged lipid droplets on the rheology and stability of emulsions has been studied. 20 wt.% oil-in-water emulsions (pH 6) containing oppositely charged droplets were fabricated by mixing cationic lactoferrin-coated lipid droplets with anionic β-lactoglobulin-coated lipid droplets. Emulsions containing mixtures of droplets with different charges (positive or negative) and sizes (large or small) were prepared, and then their overall particle characteristics (ζ-potential and size) and rheology were measured. Emulsions formed by mixing positive droplets and negative droplets that were both relatively small (d(43) ≈ 0.3 μm) exhibited extensive flocculation and had paste-like properties at intermediate positive-to-negative particle ratios. On the other hand, emulsions formed by mixing positive droplets and negative droplets that were both relatively large (d(43) ≈ 3 μm) exhibited little aggregation and had relatively low viscosities at all particle ratios. Emulsions with small negative droplets and large positive droplets (or vice versa), exhibited some aggregation and viscosity enhancement at intermediate particle ratios. The presence of relatively high levels of protein in the aqueous phase of mixed emulsions reduced the level of droplet aggregation and viscosity enhancement observed, which was attributed to the ability of protein molecules to bind to droplet surfaces and neutralize their charges. Electrostatically-induced heteroaggregation of lipid droplets may be a useful means of controlling the physicochemical properties of emulsion-based products in the food, personal care, pharmaceutical and cosmetic industries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号