首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We demonstrate a highly efficient and large area synthesis of 2-D graphene nanosheets on the surface of flexible graphite foils by electrochemical exfoliation of graphite in an effective electrolyte, poly(sodium-4-styrenesulfonate) solution.A constant current of 150 mA/cm was applied to the vertically aligned graphite (anode) and copper (cathode) sheet in the PSS electrolyte solution during a preset time for electrolytic surface exfoliation of the graphite sheet; uniform expansion of the graphite foil was observed. This expanded foil was characterized using scanning electron microscopy, confocal laser scanning microscopy, and high-resolution transmission electron microscopy. Furthermore, we demonstrate the ability of this high surface area foil, covered with uniform graphene, to enable improved electrolyte permeability and Li ion transfer, thereby enhancing electrochemical performance of Li ion battery electrodes.  相似文献   

2.
Electrochemical lithium intercalation within graphite from 1 mol dm 3 solution of LiClO4 in propylene carbonate (PC) was investigated at 25 and − 15 °C. Lithium ions were intercalated into and de-intercalated from graphite reversibly at − 15 °C despite the use of pure PC as the solvent. However, ceaseless solvent decomposition and intense exfoliation of graphene layers occurred at 25 °C. The results of the Raman spectroscopic analysis indicated that the interaction between PC molecules and lithium ions became weaker at − 15 °C by chemical exchange effects, which suggested that the thermodynamic stability of the solvated lithium ions was an important factor that determined the formation of a solid electrolyte interface (SEI) in PC-based solutions. Charge–discharge analysis revealed that the nature of the SEI formed at − 15 °C in 1 mol dm 3 of LiClO4 in PC was significantly different from that formed at 25 °C in 1 mol dm 3 of LiClO4 in PC containing vinylene carbonate, 3.27 mol kg 1 of LiClO4 in PC, and 1 mol dm 3 of LiClO4 in ethylene carbonate.  相似文献   

3.
We report a one-step synthesis of a nanocomposite of goethite (α-FeOOH) nanorods and reduced graphene oxide (RGO) using a solution method in which ferrous cations serve as a reducing agent of graphite oxide (GO) to graphene and a precursor to grow goethite nanorods. As-prepared goethite nanorods have an average length of 200 nm and a diameter of 30 nm and are densely attached on both sides of the RGO sheets. The electrochemical properties of the nanocomposite were characterized by cyclic voltammetry (CV) and chronopotentiometry (CP) charge–discharge tests. The results showed that goethite/RGO composites have a high electrochemical capacitance of 165.5 F g?1 with an excellent recycling capability making the material promising for electrochemical capacitors.  相似文献   

4.
A new heated graphite cylinder electrode (HGCE) has been successfully fabricated, which arrangement is similar to that of the heated metal (Pt or Au) wire electrode invented by Grundler. The cylinders’ diameters range from ca. 95 to 300 μm obtained by grinding the commercial available pencil graphite. HGCEs demonstrate rapid responses to the heating up and high thermal stability during being continuously heated. Predictions for the temperature rise at the electrode surface based on an empirical model for a natural laminar flow at heated cylinders are in good agreement with the experimental results. The temperature rise at HGCEs was found to be strongly dependent on the square of heating currents, the diameter and the temperature coefficient of the specific resistance of the graphite cylinders, and less dependent on the bulk solution temperature. It is indicated the temperature rise at HGCEs was linearly changed with the reciprocal of the square of the cylinder diameter as the heating currents were given. The evolution from peak-shaped to sigmoid-shaped voltammograms was manifested at HGCEs as the temperature increased from 20 to 95 °C. The compatible between biological substances and graphite electrodes might facilitate studies on the electrochemical behavior of them at HGCEs.  相似文献   

5.
We report on the easy and fast immobilization of glucose oxidase (GOD) and laccase by mechanical compression with graphite particles to form disc electrodes. The electrical wiring of GOD and laccase was efficiently carried out by their co-inclusion with ferrocene (Fc) and 2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonate) diammonium salt (ABTS) respectively. A glucose/air compartment-less biofuel cell was constructed based on the association of GOD-ferrocene-graphite disc and laccase-ABTS – graphite disc electrodes as bioanode and biocathode respectively. Such biofuel cell yielded a power density of 23 μW cm?2 at 0.33 V as well as an open-circuit voltage and a short-circuit current of 0.63 V and 166 μA, respectively.  相似文献   

6.
This study demonstrates that proper SEI layer on graphite anode is essential in LiNi0.5Mn1.5O4(LNMO)/graphite 5 V lithium-ion batteries. Succinic anhydride (SA) and 1,3-propane sultone (PS) were found to greatly extend cycle life and suppress swelling behavior of LNMO/graphite cells. The benefits of SA and PS were ascribed not only to the stable SEI layer they form on graphite but also to their stability toward the oxidation at high voltage. Using 1 M LiPF6 EC/EMC (1/2, v/v) solutions with SA and PS, LNMO/graphite Al-laminated pouch cell with nominal capacity of 600 mA h exhibited about 80% capacity retention after 100 cycles. This is the first report on the successful LNMO/graphite 5 V LIB to our best knowledge.  相似文献   

7.
A new ionic liquid (IL)–graphene composite prepared by combining IL and a three-dimensional graphene material with large specific surface area and pronounced mesoporosity was used for ultratrace trinitrotoluene detection, showing low background current, high sensitivity of 1.65 μA cm?2 per ppb, low detection limit of 0.5 ppb and good reproducibility, which is much superior to that demonstrated by the IL–CNT and IL–graphite composites. The preparation of IL–graphene composite expands the scope of IL-based electrochemical devices.  相似文献   

8.
A novel high-performance electrode material based on fibrillar polyaniline (PANI) doped with graphene oxide sheets was synthesized via in situ polymerization of monomer in the presence of graphene oxide, with a high conductivity of 10 S cm?1 at 22 °C for the obtained nanocomposite with a mass ratio of aniline/graphite oxide, 100:1. Its high specific capacitance of 531 F/g was obtained in the potential range from 0 to 0.45 V at 200 mA/g by charge–discharge analysis compared to 216 F/g of individual PANI. The doping and the ratio of graphene oxide have a pronounced effect on the electrochemical capacitance performance of the nanocomposites.  相似文献   

9.
Graphene was easily obtained via one-step ultrasonic exfoliation of graphite powder in N-methyl-2-pyrrolidone. Scanning electron microscopy, transmission electron microscopy, Raman and particle size measurements indicated that the exfoliation efficiency and the amount of produced graphene increased with ultrasonic time. The electrochemical properties and analytical applications of the resulting graphene were systematically studied. Compared with the predominantly-used reduced graphene oxides, the obtained graphene by one-step solvent exfoliation greatly enhanced the oxidation signals of various analytes, such as ascorbic acid (AA), dopamine (DA), uric acid (UA), xanthine (XA), hypoxanthine (HXA), bisphenol A (BPA), ponceau 4R, and sunset yellow. The detection limits of AA, DA, UA, XA, HXA, BPA, ponceau 4R, and sunset yellow were evaluated to be 0.8 μM, 7.5 nM, 2.5 nM, 4 nM, 10 nM, 20 nM, 2 nM, and 1 nM, which are much lower than the reported values. Thus, the prepared graphene via solvent exfoliation strategy displays strong signal amplification ability and holds great promise in constructing a universal and sensitive electrochemical sensing platform.  相似文献   

10.
Nitric acid and thermal activation of graphite granules were explored to increase the electrocatalytic performance of dissolved oxygen reduction at neutral pH for microbial fuel cell (MFC) applications. Electrochemical experiments showed an improvement of +400 mV in open circuit potential for graphite granules when they were activated. The improvement of ORR performance observed with activated granules was correlated to the increase of Brunauer–Emmett–Teller (BET) surface of the activated material and the emergence of nitrogen superficial groups revealed by X-ray photoelectron spectroscopy (XPS) analysis on its surface.The use of activated graphite granules in the cathodic compartment of a dual-chamber MFC led to a high open circuit voltage of 1050 mV, which is among one of the highest reported so far. The stable performance of this cathode material (current density of 96 A m?3 at +200 mV/Ag–AgCl) over a period of 10 days demonstrated its applicability as a cathode material without any costly noble metal.  相似文献   

11.
A novel screen-printing ink consisted of graphite, cellulose acetate and ionic liquid n-octylpyridinum hexafluorophosphate (OPPF) was developed and investigated. The graphite–cellulose acetate system was employed as the basic ink system, which could be easily printed onto the ploy(vinyl chloride) (PVC) substrate. With the natural viscosity and high conductivity of OPPF, the screen-printed electrode (SPE) from the OPPF modified ink exhibited very attractive properties, such as high stability and electrochemical reactivity, low background current and wide electrochemical window. Furthermore, the electrode possessed excellent electrocatalytic activity for the oxidation of dopamine. The linear range for the determination of dopamine was from 1.0 μM to 2.5 mM and the detection limit was 0.5 μM.  相似文献   

12.
This paper is dedicated to the study of the effect of graphite felt activation by thermal oxidation in air on its electrocatalytic activity towards Fe3+/Fe2+ redox electrode reaction. For the first time, the exchange current densities and electron transfer coefficients determined from the Tafel equation were obtained within the wide range of burn-off levels (0–50%). The maximal catalytic activity was obtained at the burn-off of 17%. The cathode having this burn-off level expressed almost three-fold enhancement in the galvanic cell performance (criterion for the performance evaluation in our case was a cell voltage at the current density of 300 mA cm−2) as compared to that with the non-activated graphite felt, and allowed to obtain current densities up to 670 mA cm−2 at the cathode polarization as low as 150 mV. The correlation between electrocatalytic activity and a surface oxide chemistry of graphite felt was established. The cell performance was found to be the best when the pH at a point of zero charge and the amount of surface quinoid groups per unit area were minimal. The results obtained are of significant importance for practical applications, including the development of electrodes in redox flow batteries.  相似文献   

13.
Molecular Absorption Spectrometry (MAS) with electrothermal vaporization was applied to the measurement of absorption by alkali halides. The MAS system, consisting of a deuterium lamp primary source, a tubular graphite furnace, a grating polychromator and a linear array of Charge-Coupled-Device (CCD) detectors, allowed the simultaneous determination of atomic and molecular absorption in the range 200–400 nm. Vaporization was carried out in a pyrocoated graphite tube and absorption was measured during the heating of the furnace from 500°C to 2000°C in 100 s.Alkali halides vaporize as molecular compounds which absorb radiation in the whole ultraviolet range. The complexity of the molecular bands as well as the extent of the absorption increases from fluorides to iodides. The limit of absorption at long wavelengths is 254 nm for NaF, 287 nm for NaCl, 320 nm for NaBr and 370 nm for NaI. The appearance of vapors was observed between 680°C (RbI) and 1220°C (LiF), while the maximum absorption was reached between 800°C (CsI) and 1440°C (LiF); the characteristic temperatures of the vaporization peak were shifted towards lower values going from fluorides to iodides.  相似文献   

14.
The paper reports the operation of a new-design microbial fuel cell using compost leachate as a substrate, oxygen/electrodeposited MnOx cathode and a new-anode concept with graphite modified by an iron/sulfur solid chemical catalyst which almost eliminates the starting delay time and gives very high current and power densities, I ~ 25 A m 3 at Pmax ~ 12 W m 3 or I ~ 3.8 A m 2 at Pmax ~ 1.8 W m 2.  相似文献   

15.
The key step of the control reaction for the preparation of graphene oxide (GO) by chemical oxidation of KMnO4/ concentrated H2SO4 oxidation system is the intercalation mass transfer process of oxidizer in graphite. Ultrasonic field can promote the intercalation mass transfer process, but the mass transfer kinetics remains unclear. In this paper, the kinetic model of mass transfer coefficient of graphene oxide sheet intercalated by Mn2O7 oxidizer in ultrasonic field was established. The Mn2O7 intercalation process after the intervention of the ultrasonic was simulated by COMSOL Multiphysics 5.5 simulation software. The results show that the ultrasonic field makes the Mn2O7 solution inside and outside the graphite layer turbulent, and the ultrasonic intervening time has little influence on the concentration distribution and diffusion rate of the solution outside the graphite layer, while it has great influence on the concentration distribution and little influence on the diffusion rate change inside the graphite layer. These results contribute to the improvement of the mass transfer theory for the preparation of GO by ultrasonic assisted chemical oxidation.  相似文献   

16.
Glucose-oxidizing enzymes are widely used in electrochemical biosensors and biofuel cells; in most applications glucose oxidase, an enzyme with non-covalently bound FAD and low capability of direct electronic communications with electrodes, is used. Here, we show that another glucose-oxidizing enzyme with a covalently bound FAD center, hexose oxidase (HOX), adsorbed on graphite, exhibits a pronounced non-catalytic voltammetric response from its FAD, at − 307 mV vs. Ag/AgCl, pH 7, characterized by the heterogeneous electron transfer (ET) rate constant of 29.2 ± 4.5 s 1. Direct bioelectrocatalytic oxidation of glucose by HOX proceeded, although, with a 350 mV overpotential relative to FAD signals, which may be connected with a limiting step in biocatalysis under conditions of the replacement of the natural redox partner, O2, by the electrode; mediated bioelectrocatalysis was consistent with the potentials of a soluble redox mediator used. The results allow development of HOX-based electrochemical biosensors for sugar monitoring and biofuel cells exploiting direct ET of HOX, and, not the least, fundamental studies of ET non-complicated by the loss of FAD from the protein matrix.  相似文献   

17.
Poly(ethylene glycol) functionalized with an amino group (PEG-amine) was synthesized and characterized by proton NMR and FTIR spectroscopy. The polymer was complexed with lithium triflate (LiOTf) in varying ratios, and it was found that the composition (PEG-amine)8.0LiOTf exhibited a maximum ionic conductivity of 10?5 S/cm at a temperature of 320 K. Graphite platelets were also dispersed into the polymer matrix, and the resulting nanomaterials were shown to be electrically conductive, with a maximum value of 1 × 103 S/cm when the graphite is present at 50% by mass.  相似文献   

18.
Doping and functionalization could significantly assist in the improvement of the electrochemical properties of graphene derivatives. Herein, we report a one-pot synthesis of fluorinated graphene oxide (FGO) from graphite. The surface morphology, functionalities and composition of the resulting FGO have been studied using various surface characterization techniques, revealing that layer-structured nanosheets with ~ 1.0 at.% F were formed. The carbon bound F exhibited semi-ionic bonding characteristic and significantly increased the capacitance of FGO compared to GO. Further, the FGO has been employed for the simultaneous detection of heavy metal ions Cd2 +, Pb2 +, Cu2 + and Hg2 + using square wave anodic stripping voltammetry; and a substantial improvement in the electrochemical sensing performance is achieved in comparison with GO.  相似文献   

19.
This work reports the development of screen-printed quantum dots (QDs)-based DNA biosensors utilizing graphite electrodes with embedded bismuth citrate as a bismuth precursor. The sensor surface serves both as a support for the immobilization of the oligonucleotide and as an ultrasensitive voltammetric QDs transducer relying on bismuth nanoparticles. The utility of this biosensor is demonstrated for the detection of the C634R mutation through hybridization of the biotin-tagged target oligonucleotide with a surface-confined capture complementary probe and subsequent reaction with streptavidin-conjugated PbS QDs. The electrochemical transduction step involved anodic stripping voltammetric determination of the Pb(II) released after acidic dissolution of the QDs. Simultaneously with the electrolytic accumulation of Pb on the sensor surface, the embedded bismuth citrate was converted in situ to bismuth nanoparticles enabling ultra-trace Pb determination. The biosensor showed a linear relationship of the Pb(II) peak current with respect to the logarithm of the target DNA concentrations from 0.1 pmol L 1 to 10 nmol L 1, and the limit of detection was 0.03 pmol L 1. The biosensor exhibited effective discrimination between a single-base mismatched sequence and the fully complementary target DNA. These “green” biosensors are inexpensive, lend themselves to easy mass production, and hold promise for ultrasensitive bioassay formats.  相似文献   

20.
The determination of fluorine using the molecular absorption of gallium mono-fluoride (GaF) at the 211.248 nm rotational line has been optimized using a commercially available high-resolution continuum source atomic absorption spectrometer with a transversely heated graphite tube furnace. The electron excitation spectrum of GaF was generated by adding 500 μg Ga per injection into the graphite tube as molecule forming reagent. Best results were obtained by applying Zr as a permanent modifier and a mixed Pd/Zr modifier, thermally pretreated before each sample injection together with the Ga reagent at 1100 °C. The use of sodium acetate and Ru(III) nitrosyl nitrate as additional modifiers injected together with the sample further improved the performance. This way a maximum pyrolysis temperature of 550 °C could be used, and the optimum molecule forming temperature was 1550 °C. Several drinking water samples, a mineral water sample, and two certified reference materials were analyzed using the standard calibration technique; the absence of potential matrix effects was verified by measuring different dilutions and spiking with known fluorine mass. The results were in good agreement with the certified values and those measured by ion selective electrode; the recovery rate for the spiking experiments was between 97% and 106%. The results show that there was no matrix influence for that kind of samples containing relatively high concentrations of Ca, Mg and chloride, which are known to cause interference in GaF molecule absorption. The limit of detection and the characteristic mass of the method were 5.2 and 7.4 pg F, respectively, and were both about a factor of two better than recently published values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号