首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The data on the uranium metal corrosion rate in the solutions of nitric acid (0,1 – 4 M) and effect of complex forming agents on uranium corrosion properties are presented. The increase of HNO3 concentration caused the shift of corrosion potential from 38 mV to 446 mV and the increase of the corrosion rate from 0,02 to 0,62 mg.cm-2h-1. Transpassivation potential of U metal was found weakly effected by HNO3 concentration varying from 448 to 470 mV/Ag/AgCl. The addition of HCOOH to the electrolytes containing less than 3 M HNO3 found to shift the values of corrosion potentials about 500 mV towards negative direction reducing the passivation of U metal. The data on the kinetics of oxidative dissolution of PuO2 using Ag(II) and Am(VI,V) as mediators and the effect of the mediator generation techniques are discussed. The electrochemical properties of UC in the solutions 2 – 4 M HNO3, results of the quantitative determination of “oxidizable carbon” in dissolver solutions are presented. The results of corrosion and dissolution studies of Tc metal and Tc - Ru alloys containing from 19 to 70 at.% Ru in 0.5 0– 6 M HNO3 indicate the formation of passive films of Tc(IV) – Ru(III,IV) hydroxides at the electrode surface in the solutions containing less than 2 M HNO3 at the potentials less than 650 mV/Ag/AgCl. The increase of HNO3 concentration to values exceeding 3 M and the shift of the electrode potential towards positive direction causes the transition of the Tc and Tc-Ru alloys to transpassive state. The values of transpassivation potentials increase with the increasing with HNO3 concentration. Quantitative dissolution of Tc metal without application of oxidation potential becomes possible in the electrolytes, containing more than 4 M HNO3. The rate of Tc – Ru alloys dissolution is noticed to slow down with the increase of Ru content in the alloy.  相似文献   

2.
We report a detailed in situ X-ray diffraction study of the influence of chloride on the atomic structure evolution at the solid-electrolyte interface during the selective dissolution of Cu from a Cu3Au(1 1 1) surface immersed in 0.1 M H2SO4. We disclose that the formation of the initial ultrathin Au-rich (1 1 1) with an inverted stacking sequence, as recently observed at Cu3Au(1 1 1) in contact with pure 0.1 M H2SO4, is strongly influenced by adding 5 mM HCl. The main finding is a negative shift of about 150 mV of the critical potential at which the ultra-thin Au-rich layer transforms into thicker Au islands. The presented results support the view that it is not a thermodynamic driving force, but rather the rate of surface diffusion that dominates the formation of the structures of the metallic layer.  相似文献   

3.
Binary solution of nordihydroguaiaretic acid (NDGA) and 4,4′-diaminobibenzyl (DABB) undergoes rapid oxidation by ambient oxygen to form a thin film of poly-NDGA-co-DABB on the surface of the reaction chamber and on immersed substrates. Electrochemistry of thus formed films was studied in 0.1 M sulfuric acid and in phosphate buffer (pH 7.4). Electrochemical behavior of the co-polymeric film is characterized by two redox couples, the predominant one being observed at more negative potentials comparing to parent NDGA i.e. 0.28 vs. 0.49 V (vs. Ag/AgCl) in 0.5 M H2SO4. The peak potentials were shifted toward lower values with solution pH at the rate of 59 mV/pH unit indicating a 2e/2H+ transition as expected for quinone-containing films. The poly-NDGA-co-DABB film exhibits catalytic activity toward electroreduction of nitrite to nitric oxide in acidic electrolytes. This reaction can be used to quantify nitrite in a broad concentration range with low detection limit (0.3 μM, S/N = 3).  相似文献   

4.
In the present work, experimental data on the equilibrium conditions of mixed CO2 and THF hydrates in aqueous electrolyte solutions are reported. Seven different electrolytes (metal halides) were used in this work namely sodium chloride (NaCl), calcium chloride (CaCl2), magnesium chloride (MgCl2), potassium bromide (KBr), sodium fluoride (NaF), potassium chloride (KCl), and sodium bromide (NaBr). All equilibrium data were measured by using Cailletet apparatus. Throughout this work, the overall concentration of CO2 and THF were kept constant at (0.04 and 0.05) mol fraction, respectively, while the concentration of electrolytes were varied. The experimental temperature ranged from (275 to 305) K and pressure up 7.10 MPa had been applied. From the experimental results, it is concluded that THF, which is soluble in water is able to suppress the salt inhibiting effect in the range studied. In all quaternary systems studied, a four-phase hydrate equilibrium line was observed where hydrate (H), liquid water (LW), liquid organic (LV), and vapour (V) exist simultaneously at specific pressure and temperature. The formation of this four-phase equilibrium line is mainly due to a liquid–liquid phase split of (water + THF) mixture when pressurized with CO2 and the split is enhanced by the salting-out effect of the electrolytes in the quaternary system. The strength of hydrate inhibition effect among the electrolytes was compared. The results shows the hydrate inhibiting effect of the metal halides is increasing in the order NaF < KBr < NaCl < NaBr < CaCl2 < MgCl2. Among the cations studied, the strength of hydrate inhibition increases in the following order: K+ < Na+ < Ca2+ < Mg2+. Meanwhile, the strength of hydrate inhibition among the halogen anion studied decreases in the following order: Br? > Cl? > F?. Based on the results, it is suggested that the probability of formation and the strength of ionic–hydrogen bond between an ion and water molecule and the effects of this bond on the ambient water network are the major factors that contribute to hydrate inhibition by electrolytes.  相似文献   

5.
P-type copper indium diselenide (CuInSe2) films have been prepared onto ITO substrates by an electrodeposition method, that sequentially applies potential pulses at the deposition potential of each element Cu, Se and In, and then step it back in cyclically to induce the solid state reaction between the elements. Two electrolyte concentrations as well as three different pulse durations were assessed. The resulting films were compared with those deposited at fixed electrode potentials. As-grown films are nanocrystalline and have an Eg 0.95 eV. Raman spectroscopy shows that Se and Cu–Se contents decrease while pulse duration increases and electrolyte concentration decreases. Cu–Se phases are even absent for films grown at the low electrolyte concentration. These results represent a great improvement in the film phase purity reducing the need of post-deposition treatments.  相似文献   

6.
Photoanodes based on Ti/TiO2 thin films were prepared by the sol–gel method, using either tetraisopropoxide (Ti(OPri)4) or modified tetraisopropoxide, producing electrodes with different sized nanoparticle coatings, termed nanoporous (20 nm) or nanoparticulated (10 nm) electrodes. The anatase form dominated the composition of the nanoparticulated electrode, which presented a higher surface area, a flat band potential shift of ?160 mV and a 50% improvement in photoactivity, compared to the nanoporous electrode. 100% color removal, and 75% mineralization, of indigo carmine dye were achieved after 15 min of photoelectrocatalytic treatment using a nanoparticulated Ti/TiO2 electrode operated at a current density of 0.4 mA cm?2. Our findings indicate that the use of nanoparticulated electrodes, under UV irradiation and with controlled current density, is an efficient alternative for the removal of food dye contaminants during wastewater treatment.  相似文献   

7.
A simple, sensitive, and cost-effective analytical method was developed for the speciation analysis of inorganic selenium by combining a nano-TiO2 preconcentration with an ion chromatography-conductivity detection (IC-CD) system. The experimental conditions for the simultaneous adsorption and desorption of Se(IV) and Se(VI) were carefully investigated. Under the established optimum condition, the Se(IV) and Se(VI) ions could been simultaneously adsorbed onto the nano-TiO2 surface at pH 4.0, and then effectively desorbed by 0.1 M sodium hydroxide eluent. The adsorption process was fast and reached adsorption equilibrium within 10 min. The nano-TiO2 also exhibited high adsorption capacity with 11.3 mg g? 1 for Se(IV) and 8.34 mg g? 1 for Se(VI). The enrichment factors for Se(IV) and Se(VI) were calculated to be 39 and 30, respectively, with sample volume of 50 mL. The detection limits (3σ) were 0.8 μg L? 1 for Se(IV) and 0.4 μg L? 1 for Se(VI), which were sensitive enough for the routine analysis of water and drink samples. The relative standard deviation was calculated to be < 4% (n = 6) for detection of 30 μg L? 1 Se(IV) and 30 μg L? 1 Se(VI). The results of the present work confirmed that our developed nano-TiO2-IC-CD method could be applied for the detection of inorganic selenium species in tap water and drink samples with good recoveries in the range of 82%–108%.  相似文献   

8.
The present paper describes the electrochemical fabrication of nanostructured oxide films on a TiAl intermetallic compound. The alloy is investigated under conditions where the individual alloying elements show the growth of ordered oxide structures, i.e. anodization is carried out in fluoride containing and fluoride free H2SO4 electrolytes. In 1 M H2SO4 the alloy shows randomly ordered nanoporous oxide structures while in HF-containing electrolytes highly ordered films can be formed. The key factor that affects the morphology is the anodizing potential. At low potentials (∼10 V) self-organized nanopores are formed whereas at higher potentials (∼40 V) separation of the pore walls and therefore formation of nanotubes can be observed. The results clearly indicate that on TiAl a wide range of nanoscale morphologies can be achieved ranging from random porous to organized pores to organized tubes.  相似文献   

9.
The MoO3 thin films were prepared via sol–gel dip coating method on glass and FTO glass substrate. The optical and other properties of multilayered MoO3 films with 2–10 layers were investigated. The MoO3 films were studied using UV–Visible transmission, XRD, SEM, FTIR and Cyclic Voltammetry (CV) measurements. The band gap value for MoO3 films was evaluated and in the range of 3.2 eV–3.72 eV. The XRD spectrum reveals that the crystallinity increases along the (020) and (040) planes with the increase in thickness. The SEM images showed the formation of nanorods upto six layers. The FTIR spectrum confirms the formation of MoO3. The 6 layered films show the maximum anodic (spike)/cathodic (peak) diffusion coefficient of 18.84/1.701 × 10?11 cm2/s. The same film exhibits the change in optical transmission of 49% with the bleached/coloured state transmission of 62/13%.  相似文献   

10.
The electrochemical measurements were carried out by using thermophilic cytochrome P450 CYP119A2 (P450st) modified with poly(ethylene oxide) (PEO) in PEO200 as an electrochemical solvent. The PEO modified P450st gave clear reduction–oxidation peaks by cyclic voltammetry in oxygen-free PEO200 up to 120 °C. The midpoint potential measured for the P450st was −120 mV vs. [Fe(CN)6]4−/[Fe(CN)6]3− at 120 °C. The peak separation, ΔE, was 16 mV at 100 mV/s. The estimated electron transfer rate of PEO-P450st at 120 °C was 35.1 s−1. The faster electron transfer reaction was achieved at higher temperatures. The electrochemical reduction of dioxygen was observed at 115 °C with the PEO-modified P450st system.  相似文献   

11.
The feasibility of a new fabrication route for films of the attractive solar absorber Cu2ZnSnS4 (CZTS) has been studied, consisting of electrodeposition of metallic precursors followed by annealing in sulfur vapour. Photoelectrochemical measurements using a Eu3+ contact have been used to establish that the polycrystalline CZTS films are p-type with doping densities in the range (0.5–5) × 1016 cm−3 and band gaps of 1.49 ± 0.01 eV, making them suitable for terrestrial solar energy conversion. It has been shown that a somewhat Cu-poor composition favours good optoelectronic properties.  相似文献   

12.
This paper reports two low-profile (~ 10 μm thick) solid state reference electrodes for use in solid polymer electrolytes. The thin, open geometry of the electrodes enables close positioning between the working and counter electrodes. The first electrode uses the palladium hydride (Pd|PdHx) couple (PHRE), and the second utilises the hydrous iridium oxide (IrOx·yH2O|IrOa·bH2O) couple (IORE). To our knowledge this is the first use of the latter as a reference electrode. The PHRE had a stable potential of + 70 mV vs RHE with a 4 mV h 1 drift and two hour lifetime, whilst the IORE gave a potential of + 847 mV vs RHE with a drift of 0.3 mV h 1 and no deterioration after 24 h of use. The use of these reference electrodes in a three-electrode solid state cell and a fuel cell is demonstrated.  相似文献   

13.
Visible light active hydrogen modified n-type titanium oxide (HM-n-TiO2) thin films were synthesized by thermal oxidation of Ti metal sheet (Alfa Co. 0.25 mm thick) in an electric oven followed by incorporation of hydrogen electrochemically under cathodic polarization at ?1.6 V vs Pt. The photoresponse of the HM-n-TiO2 was evaluated by measuring the rate of water splitting reaction to hydrogen and oxygen in terms of photocurrent density, Jp. The optimized electric oven-made n-TiO2 and HM-n-TiO2 photoelectrodes showed photocurrent densities of 0.2 mA cm?2 and 1.60 mA cm?2, respectively, at a measured potential of ?0.4 V vs Pt at illumination intensity of 100 mW cm?2 from a 150 W xenon lamp. This indicated an eightfold increase in photocurrent density for HM-n-TiO2 compared to oven-made n-TiO2 at the same measured electrode potential. The band-gap energy of HM-n-TiO2 was found to be 2.7 eV compared to 2.82 eV for electric oven-made n-TiO2 and a mid-gap band at 1.67 eV above the valence band was also observed. The HM-n-TiO2 thin film photoelectrodes were characterized using photocurrent density under monochromatic light illumination and UV–Vis spectral measurements.  相似文献   

14.
A new detection technique called the fast Fourier transform square-wave voltammetry (FFT-SWV) is based on the measurements of electrode admittance as a function of potential. The response of the detector (microelectrode) is fast, which makes the method suitable for most applications involving flowing electrolytes. The carbon paste electrode was modified by nanostructures to improve better sensitivity. The response is generated by a redox processes. The redox property of L-dopa was used for determination of it in human serum and urine samples. The support electrolyte that provided a more defined and intense peak current for L-dopa determination was at 0.05 mol l?1 acetate buffer pH 7.0. Synthesized dysprosium nanowires make more effective surface like nanotubes [1], [2], [3], [4] so they are good candidates for using as a modifier for electrochemical reactions. The drug presented one irreversible oxidation peaks at 360 mV versus Ag/AgCl by modified nanowire carbon paste electrode which produced high current and reduced the oxidation potential about 80 mV.Furthermore, signal-to-noise ratio has significantly increased by application of discrete fast Fourier transform (FFT) method, background subtraction and two-dimensional integration of the electrode response over a selected potential range and time window. To obtain the much sensitivity the effective parameters such as frequency, amplitude and pH was optimized. As a result, CDL of 4.0 × 10?9 M and an LOQ of 7.0 × 10?9 M were found for determination for L-dopa. A good recovery was obtained for assay spiked urine samples and a good quantification of L-dopa was achieved in a commercial formulation.  相似文献   

15.
A systematic investigation of the reactions of Cu(ClO4)2 · 6H2O with maleamic acid (H2L) in the presence of 2,2′-bipyridine (bpy) has been carried out. The chemical and structural identity of the products depends on the solvent, the absence or presence of external hydroxides in the reaction mixture and the molar ratio of the reactants. Various reaction schemes have led to the isolation of the complexes [Cu2(HL)2(bpy)2(H2O)2](ClO4)2 (1), [Cu2(HL)2(bpy)2(H2O)2](ClO4)2 · 2H2O (1 · 2H2O), [Cu(L′′)(bpy)]n · 2nH2O (2 · 2nH2O), [Cu2(L′′)(bpy)2(H2O)2]n(ClO4)2n · 0.5nH2O (3 · 0.5nH2O), [Cu2(L′′)2(bpy)2] · 2MeOH (5 · 2MeOH), [Cu2(L′)2(bpy)2(ClO4)2] (6) and [Cu(ClO4)2(bpy)(MeCN)2] (7b), where L′′2? and L′? are the maleate(?2) and monomethyl maleate(?1) ligands, respectively. The HL? ion has been transformed to L′′2? and L′? in the known compounds 2 · 2nH2O and 6, respectively, via metal ion-assisted processes involving hydrolysis (2 · 2nH2O) and methanolysis (6) of the primary amide group. The reaction that leads to 6 takes place through the formation of the mononuclear complex [Cu(ClO4)2(bpy)(MeOH)2] (7a), whose structure was assigned on the basis of its spectral similarity with the structurally characterized complex 7b. The structures of the cations in 1 and 1 · 2H2O consists of two CuII atoms bridged by the carboxylate groups of the two HL? ligands, each exhibiting the less common η2 coordination mode; a chelating bpy molecule and a H2O ligand complete square pyramidal coordination at each metal centre. The structure of the dinuclear repeating unit in the 1D coordination polymer 3 · 0.5nH2O consists of two CuII atoms bridged by two syn,syn η1:η1:μ2 carboxylate groups belonging to two L′′2? ions; each ligand bridged two neighboring [CuII,II2] units thus promoting the formation of a helical chain. The structure of the dinuclear molecule of complex 5 · 2MeOH consists of two CuII atoms bridged by two η2 carboxylate groups from two L′′2? ligands; the second carboxylate group of each maleate(?2) ligand is monodentately coordinated to CuII, creating a remarkable seven-membered chelating ring. The L′? ion behaves as a carboxylate-type ligand in 6, with the carboxylate group being in the familiar syn,syn η1:η1:μ2 coordination mode; a chelating bpy molecule and a coordinated ClO4? complete five-coordination at each CuII centre. The crystal structures of the complexes are stabilized by various H-bonding patterns. Characteristic IR bands of the complexes are discussed in terms of the known structures and the coordination modes of the ligands.  相似文献   

16.
Titania nanotube arrays were fabricated by anodic oxidation of titanium foil in different electrolytes. The morphology, crystallinity and composition of the as-prepared nanotube arrays were studied by XRD, SEM and EDX. Electrochemical impedance spectroscopy (EIS) was employed to investigate their electrical conductivity and capacitance. Titania nanotube arrays co-adsorbed with horseradish peroxidase (HRP) and thionine chloride (Th) were studied for their sensitivity to hydrogen peroxide by means of cyclic voltammetric and galvanostatic measurements. The experiments showed that TiO2 nanotube arrays possessed appreciably different sensitivities to H2O2 due to their different conductivity. Further experiments revealed that TiO2 nanotubes have noticeably different ability of adsorbing HRP and Th, and the best sensitivity was achieved when the density of HRP is the highest. The TiO2 nanotube arrays fabricated in potassium fluoride solution demonstrated the best sensitivity on hydrogen peroxide in the range of 10−5–3 × 10−3 M at pH 6.7 and at a potential of −600 mV (vs. Ag/AgCl).  相似文献   

17.
Nanoparticles with different shapes were prepared at the air/water interface via hydrolysis of Pb2+ ions under Langmuir films of poly(N-vinylcarbazole) (PVK) at 30–50 °C. It was found that round or irregular nanoparticles with the size of several to several tens of nanometers were formed when the PbCl2 aqueous solution with the concentration of 1 × 10?3 mol L?1 was used as subphase, while single-crystalline quasi-hexagonal nanoplates, nanostars and dendrites with the size of several hundreds of nanometers were obtained when the subphase concentration was 1 × 10?4 mol L?1. Analysis on the selective-area electron diffraction (SAED) patterns revealed that the formed nanoparticles are β-PbO. The formation of the nanostructures should be attributed to the formation and dehydration of lead hydroxide, diffuse-limited growth and aggregation of nanoparticles at the air/water interface.  相似文献   

18.
In this study, we achieve the production of nontoxic Cu2Fe1-xAlxSnS4 films (x = 0, 0.25, 0.50, 0.75 and 1) by substituting Fe with Al atoms. Physical properties of the investigated films were studied using: Energy dispersive X-ray spectrometry (EDX), scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, spectrophotometer and drop shape analysis system (DSA). The formation of new quaternary Cu3Al0.6Sn1S6 (CATS) chalcogenide for x = 1 was proven from EDX study. Notably, the major diffraction peaks were located at 2θ = 28.34°, 47.43° and 55.93° which are respectively tagged as (1 1 2), (2 0 4), and (3 1 2) plans, confirming the stannite crystal structure of Cu3Al0.6Sn1S6 film. The morphological states show a nanofiber structure accompanied with voids and cavities for CATS films. Tauc-relation plot reveals direct energy bandgap, close to 1.52 eV, which proves the absorber film type of Cu3Al0.6Sn1S6. The effluent toxicity of the obtained thin films has been assessed using the inhibition of Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria and indicated good antibacterial activity of the CATS/SnO2:F heterojunction. The viability rates against S. aureus achieved 40 %, 31 % and 15% for SnO2:F, Cu3Al0.6Sn1S6 films and CATS/SnO2:F heterojunction. These results highlight the great antibacterial activity of coupled CATS/SnO2:F. Therefore this research underscores the effectiveness of CATS/SnO2:F surface which demonstrates self-disinfecting and self-cleaning with hydrophilicity and high antibacterial activity.  相似文献   

19.
Binding of copper to three peptide fragments of prion (Cu2+ binding sites: 60–91, 92–96 and 180–193 amino acid residues) was investigated by anodic stripping voltammetry to determine the stoichiometries of Cu2+-prion peptide interactions. The method relies on the synthesis of N-terminally acetylated/C-terminally amidated peptide fragments of prion by solid-phase synthesis and direct monitoring of the oxidation current of copper in the absence and presence of each prion fragment. Titration curves of Cu2+ with Ac-PHGGGWGQ-NH2, Ac-GGGTH-NH2 and Ac-VNITKQHTVTTTT-NH2 were obtained in concentrations ranging from 8.52 × 10?7 to 5.08 × 10?6, 3.95 × 10?7 to 1.94 × 10?6 and 7.82 × 10?8 to 4.51 × 10?7 M, respectively. The acquired data were used to calculate the stoichiometries (one peptide per Cu2+ ion for all the three studied systems) and apparent dissociation constants (Kd = 4.37 × 10?8–3.50 × 10?10 M) for the three complexes.  相似文献   

20.
Solvothermal growth of cuprous selenide films on copper substrate has been succeeded by treating copper foil in the mixture of selenium powder and amines or hydrazine. The films were characterized by methods of XRD, SEM, TEM and optical spectra (Cu2Se, JCPDS 47-1448). Films with hexagonal microcrystals can be obtained in hydrazine/water reaction system. When CTAB (CTAB = cetyltrimethylammonium bromide) is added to the system, the film is composed of thin leaf-like microcrystals. When ethylenediamine (en) is used as solvent, the leaf-like microcrystals are crimped.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号