首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sonochemical degradation of ethyl paraben (EP), a representative of the parabens family, was investigated. Experiments were conducted at constant ultrasound frequency of 20 kHz and liquid bulk temperature of 30 °C in the following range of experimental conditions: EP concentration 250–1250 μg/L, ultrasound (US) density 20–60 W/L, reaction time up to 120 min, initial pH 3–8 and sodium persulfate 0–100 mg/L, either in ultrapure water or secondary treated wastewater.A factorial design methodology was adopted to elucidate the statistically important effects and their interactions and a full empirical model comprising seventeen terms was originally developed. Omitting several terms of lower significance, a reduced model that can reliably simulate the process was finally proposed; this includes EP concentration, reaction time, power density and initial pH, as well as the interactions (EP concentration) × (US density), (EP concentration) × (pHo) and (EP concentration) × (time).Experiments at an increased EP concentration of 3.5 mg/L were also performed to identify degradation by-products. LC–TOF–MS analysis revealed that EP sonochemical degradation occurs through dealkylation of the ethyl chain to form methyl paraben, while successive hydroxylation of the aromatic ring yields 4-hydroxybenzoic, 2,4-dihydroxybenzoic and 3,4-dihydroxybenzoic acids. By-products are less toxic to bacterium V. fischeri than the parent compound.  相似文献   

2.
《Ultrasonics sonochemistry》2014,21(6):2084-2091
Lignocellulosic biomass samples (wheat chaff) were pretreated by ultrasound (US) (40 kHz/0.5 W cm−2/10 min and 400 kHz/0.5 W cm−2/10 min applied sequentially) prior to digestion by enzyme extracts obtained from fermentation of the biomass with white rot fungi (Phanerochaete chrysosporium or Trametes sp.). The accessibility of the cellulosic components in wheat chaff was increased, as demonstrated by the increased concentration of sugars produced by exposure to the ultrasound treatment prior to enzyme addition. Pretreatment with ultrasound increased the concentration of lignin degradation products (guaiacol and syringol) obtained from wheat chaff after enzyme addition. In vitro digestibility of wheat chaff was also enhanced by the ultrasonics pretreatment in combination with treatment with enzyme extracts. Degradation was enhanced with the use of a mixture of the enzyme extracts compared to that for a single enzyme extract.  相似文献   

3.
In this study, the effects of ultrasound with different ultrasonic frequencies on the properties of sodium alginate (ALG) were investigated, which were characterized by the means of the multi-angle laser light scattering photometer analysis (GPC-MALLS), rheological analysis, circular dichroism (CD) spectrometer and scanning electron microscope (SEM). It showed that the molecular weight (Mw) and molecular number (Mn) of the untreated ALG was 1.927 × 105 g/mol and 4.852 × 104 g/mol, respectively. The Mw of the ultrasound treated ALG was gradually increased from 3.50 × 104 g/mol to 7.34 × 104 g/mol while the Mn of ALG was increased and then decreased with the increase of the ultrasonic frequency. The maximum value of Mn was 9.988 × 104 g/mol when the ALG was treated by ultrasound at 40 kHz. It indicated that ultrasound could induce ALG degradation and rearrangement. The number of the large molecules and small molecules of ALG was changed by ultrasound. The value of dn/dc suggested that the ultrasound could enhance the stability of ALG. Furthermore, it was found that ALG treated by ultrasound at 50 kHz tended to be closer to a Newtonian behavior, while the untreated and treated ALG solutions exhibited pseudoplastic behaviours. Moreover, CD spectra demonstrated that ultrasound could be used to improve the strength of the gel by changing the ratio of M/G, which showed that the minimum ratio of M/G of ALG treated at 135 kHz was 1.34. The gel-forming capacity of ALG was correlated with the content of G-blocks. It suggested that ALG treated by ultrasound at 135 kHz was stiffer in the process of forming gels. The morphology results indicated that ultrasound treatment of ALG at 135 kHz increased its hydrophobic interaction and interfacial activity. This study is important to explore the effect of ultrasound on ALG in improving the physical properties of ALG as food additives, enzyme and drug carriers.  相似文献   

4.
The effect of 24 kHz, high energy ultrasound in the presence and absence of titanium dioxide particles on the destruction of different bacteria groups was studied. Applying a total of 1500 W/L for 60 min (this corresponds to 5400 kJ/L specific nominal energy), the mean destruction of gram-negative bacteria such as total coliforms, faecal coliforms and Pseudomonas spp. was 99.5%, 99.2% and 99.7%, respectively. More recalcitrant to sonolytic inactivation were the gram-positive bacteria Clostridium perfringens and faecal streptococci with a mean removal of 66% and 84%, respectively. The presence of 5 g/L TiO2 generally enhanced the destruction of gram-negative bacteria, yielding three to five logs reduction. On the other hand, the relatively weak sonochemical inactivation of gram-positive bacteria was only slightly affected by the presence of solid particles. Inactivation was found to follow first-order kinetics regarding bacteria population and was not affected significantly by the wastewater quality. Ultrasound irradiation at 4000 kJ/L specific nominal energy and in the presence of 5 g/L TiO2 achieved less than 103 CFU/100 mL total coliforms, thus meeting USEPA quality standards for wastewater reuse.  相似文献   

5.
In this work, the influence of CCl4 on the sonochemical decolorization of anthraquinonic dye Acid Blue 25 (AB25) in aqueous medium was investigated using high frequency ultrasound (1700 kHz). This frequency, reputed ineffective, was tested in order to introduce the ultrasound waves with high frequency in the field of degradation or removal of dyes from wastewater, due to its limited use in this field, and to increase the application of high frequency ultrasound wave in the field of environmental protection. The effects of various parameters such as the concentration of CCl4, frequency (22.5 and 1700 kHz), solution pH, temperature and tert-butyl alcohol adding on the decolorization rate of AB25 was studied. The obtained results clearly demonstrated the significant intensification of AB25 decolorization in the presence of CCl4. The enhancement effect of CCl4 increased by decreasing temperature and by increasing the CCl4 concentration. The pH has a significant influence on the bleaching of dye both in the absence and presence of CCl4. The three investigated dosimeter methods (KI oxidation, Fricke reaction and H2O2 production) well corroborate the improvement of the sonochemical effects in the presence of CCl4. The best sonochemical decolorization rate of AB25 in aqueous solution both in the absence and presence of CCl4 is observed to occur at 1700 kHz compared to 22.5 kHz. The sonochemical oxidation of CCl4 generates oxidizing species in the liquid phase that are highly beneficial for oxidation of hydrophilic and non-volatile pollutant, such as dyes, because they are less susceptible to free radical attack due to lower stability of the generated free radicals.  相似文献   

6.
The sonoelectrochemical degradation of phenol in aqueous solutions with stainless steel electrodes and high-frequency ultrasound (850 kHz) was investigated. A 60% synergetic effect was obtained in the combined reaction system. High concentration of electrolyte (sodium sulfate) and a high electrical voltage are favorable conditions for the degradation of phenol. A nearly complete degradation of phenol was achieved with 4.26 g/L Na2SO4 and 30 V electrical voltages at 25 °C in 1 h. The degradation of phenol follows pseudo-first order kinetics. Considering costs and application, the energy efficiency of the reaction system with different reaction conditions was evaluated.  相似文献   

7.
A novel alternated ultrasonic and electric pulse enhanced electrochemical process was developed and used for investigating its effectiveness on the degradation of p-nitrophenol (PNP) in an aqueous solution. The impacts of pulse mode, pH, cell voltage, supporting electrolyte concentration, ultrasonic power and the initial concentration of PNP on the performance of PNP degradation were evaluated. Possible pathway of PNP degradation in this system was proposed based on the intermediates identified by GC–MS. Experimental results showed that 94.1% of PNP could be removed at 2 h in the dual-pulse ultrasound enhanced electrochemical (dual-pulse US-EC) process at mild operating conditions (i.e., pulse mode of electrochemical pulse time (TEC) = 50 ms and ultrasonic pulse time (TUS) = 100 ms, initial pH of 3.0, cell voltage of 10 V, Na2SO4 concentration of 0.05 M, ultrasonic powder of 48.8 W and initial concentration of PNP of 100 mg/L), compared with 89.0%, 58.9%, 2.4% in simultaneous ultrasound enhanced electrochemical (US-EC) process, pulsed electrochemical (EC) process and pulsed ultrasound (US), respectively. Moreover, energy used in the dual-pulse US-EC process was reduced by 50.4% as compared to the US-EC process. The degradation of PNP in the pulsed EC process, US-EC process and dual-pulse process followed pseudo-first-order kinetics. Therefore, the dual-pulse US-EC process was found to be a more effective technique for the degradation of PNP and would have a promising application in wastewater treatment.  相似文献   

8.
Degradation of azo dye Acid Orange 7 (AO7) by zero-valent aluminum (ZVAl) in combination with ultrasonic irradiation was investigated. The preliminary studies of optimal degradation methodology were conducted with sole ultrasonic, sole ZVAl/air system, ultrasonication + ZVAl/air system (US-ZVAl). In ZVAl/air system, the degradation of AO7 could almost not be observed within 30 min. The degradation of AO7 by ZVAl/air system was obviously enhanced under ultrasound irradiation, and the enhancement is mainly attributed to that the production of hydroxyl radicals in ultrasound-ZVAl process was much higher than that in sole ultrasonic or in sole ZVAl/air system. The variables considered for the effect of degradation were the power of ultrasound, the initial concentration of AO7, as well as the initial pH value and the dosage of zero-valent aluminum. The results showed that the decolorization rate increased with the increase of power density and the dosage of ZVAl, but decreased with the increase of initial pH value and initial concentration of AO7. More than 96% of AO7 removal was achieved within 30 min under optimum operational conditions (AO7: 20 mg/L, ZVAl: 2 g/L, pH: 2.5, ultrasound: 20 kHz, 300 W). This study demonstrates that ultrasound-ZVAl process can effectively decolorize the azo dye AO7 in wastewater.  相似文献   

9.
《Ultrasonics sonochemistry》2014,21(5):1875-1880
Perfluorooctanoic acid (PFOA) is a recalcitrant organic pollutant in wastewater because of its wide range of applications. Technologies for PFOA treatment have recently been developed. In this study, PFOA decomposition by sonochemical treatment was investigated to determine the effects of NaHCO3 concentrations, N2 saturation, and pH on decomposition rates and defluorination efficiencies. The results showed that PFOA decomposition by ultrasound treatment only (150 W, 40 kHz), with or without saturated N2, was <25% after 4 h reaction. The extent and rate of PFOA decomposition and defluorination efficiencies of PFOA, however, greatly increased with the addition of carbonate radical reagents. PFOA was completely decomposed after 4 h of sonochemical treatment with a carbonate radical oxidant and saturated N2. Without saturated N2, PFOA was also decomposed to a high (98.81%) degree. The highest PFOA decomposition and defluorination efficiencies occurred in N2 saturated solution containing an initial NaHCO3 concentration of 30 mM. Sonodecomposition of PFOA with CO3 radical was most favorable in a slightly alkaline environment (pH = 8.65). There isn’t any shorter-chain perfluorinated carboxylic acids detected except fluorine ions in final reaction solution.  相似文献   

10.
Micropollutants are becoming an increasing problem for the environment and wastewater treatment. One example is Bisphenol A (BPA), an endocrinic disruptor, which is widely used in plastic production. Due to its endocrine disrupting effects on aquatic (micro-)organisms and its ubiquity, in surface- and wastewater alike, adequate treatment techniques are necessary.In this study, the degradation of BPA by a sonoelectrochemical hybrid system was investigated, using a low frequency (24 kHz) ultrasound horn and two boron doped diamond electrodes. It was found that by the combination of the individual processes, i.e. ultrasound and electrochemical oxidation, more than 90% of BPA could be removed within 30 min at an initial concentration of 1 mg L−1. Moreover, synergistic effects were discovered and a considerable improvement compared to the individual processes could be achieved by using a potential of 5 V, whereas synergistic effects were absent at a potential of 10 V. This study provides investigation of ultrasound amplitude, potential and electrode positioning on BPA degradation. The reaction was found to follow pseudo first order kinetics with a rate constant of 0.089 min−1. Samples were analysed by high pressure liquid chromatography (HPLC) using a diode array detector. Moreover, the presence and distribution of hydroxyl radicals within the reactor was visualized by using sonochemiluminescence.  相似文献   

11.
《Ultrasonics sonochemistry》2014,21(5):1778-1786
The present work deals with application of sonochemical reactors for the treatment of imidacloprid containing wastewaters either individually or in combination with other advanced oxidation processes. Experiments have been performed using two different configurations of sonochemical reactors viz. ultrasonic horn (20 kHz frequency and rated power of 240 W) and ultrasonic bath equipped with radially vibrating horn (25 kHz frequency and 1 kW rated power). The work also investigates the effect of addition of process intensifying agents such as H2O2 and CuO, which can enhance the production of free radicals in the system. The combination studies with advanced oxidation process involve the advanced Fenton process and combination of ultrasound with UV based oxidation. The extent of degradation obtained using combination of US and H2O2 at optimum loading of H2O2 was found to be 92.7% whereas 96.5% degradation of imidacloprid was achieved using the combination of US and advanced Fenton process. The process involving the combination of US, UV and H2O2 was found to be the best treatment approach where complete degradation of imidacloprid was obtained with 79% TOC removal. It has been established that the use of cavitation in combination with different oxidation processes can be effectively used for the treatment of imidacloprid containing wastewater.  相似文献   

12.
In the present work, combination of ultraviolet (UV) irradiations (using 8 W UV tube) with ultrasonic (US) irradiations (rated power 1 kW and frequency of 25 kHz) has been investigated for the degradation of phenol at pilot scale of operation. Different modes of operation viz. UV alone, US alone, UV/US, UV/TiO2 (photocatalysis), UV/H2O2, UV/NaCl, UV/US/TiO2 (sonophotocatalysis) and H2O2 assisted sonophotocatalysis have been investigated with an objective of maximizing the extent of phenol degradation. Effect of presence of hydrogen peroxide and sodium chloride at a concentration of 10 g/l and TiO2 over a range of 0.5–2.5 g/l has been investigated. It has been observed that 2.0 g/l of TiO2 is the optimum concentration, beyond which a decrease in the extent of degradation is observed. Maximum extent of degradation of phenol was 37.75% for H2O2 assisted photosonocatalysis at pH of 2. The present work is first of its kind to report the use of combined ultrasonic and UV irradiations at pilot scale operation and obtained results should induce some degree of certainty in proposed industrial applications of sonochemical reactors for wastewater treatment.  相似文献   

13.
《Ultrasonics sonochemistry》2014,21(6):1994-2009
Degradation of five textile dyes, namely Reactive Red 141 (RR 141), Reactive Blue 21 (RB 21), Acid Red 114 (AR 114), Acid Blue 113 (AB 113) and Basic Violet 16 (BV 16) in aqueous solution has been carried out with ultrasound (US) and in combination with rare earth ions (La3+ and Pr3+). Kinetic analysis of the data showed a pseudo-first order degradation reaction for all the dyes. The rate constant (k), half life (t1/2) and the process efficiency (φ) for various processes in degradation of dyes under different experimental conditions have been calculated. The influence of concentrations of dyes (16–40 mg/L), pH (5, 7 and 9) and rare earth ion concentration (4, 12 and 20 mg/L) on the degradation of dyes have also been studied. The degradation percentage increased with increasing rare earth amount and decreased with increasing concentration of dyes. Both horn and bath type sonicators were used at 20 kHz and 250 W for degradation. The sonochemical degradation rate of dyes in the presence of rare earths was related to the type of chromophoric groups in the dye molecule. Degradation sequence of dyes was further examined through LCMS and Raman spectroscopic techniques, which confirmed the sonochemical degradation of dyes to non-toxic end products.  相似文献   

14.
The degradation of a reactive azo dye, Direct Red 81 (DR81), by Fenton process and in conjunction with sonolysis (SonoFenton) was studied. The synergistic effect of Fenton process and sonolysis enhanced the degradation of Direct Red 81 in aqueous solutions and the reaction followed the mechanism of hydroxyl radical (HO) oxidation. The influence of the initial substrate concentration, pH and catalyst loading on the rate of decolorisation were studied. The dye decolorisation followed apparent first order kinetics. The optimum conditions for decolorisation were pH = 3.0, [Fe2+] = 0.2 g/l, [H2O2] = 5.1 × 10−3 mol/l and ultrasonic frequency = 120 kHz, 60 W. These conditions yielded 99% decolorisation of DR81 within 75 min. The sonolytic degradation products of DR81 were identified using Electrospray Ionization-Mass Spectrometry (ESI-MS). The presence of CO32−, HCO3, Cl, NO3, and SO42− ions in the dye solution did not have a considerable effect on the decolorisation efficiency. This study demonstrates that Fenton and SonoFenton methods can effectively decolorize DR81 dye in waste water. The dye concentration used in this study is higher compared to earlier studies illustrating the effective mineralization by the SonoFenton process. The mechanism of dye degradation is also proposed.  相似文献   

15.
《Ultrasonics sonochemistry》2014,21(4):1535-1543
The potential of ultrasound-assisted technology has been demonstrated by several laboratory scale studies. However, their successful industrial scaling-up is still a challenge due to the limited pilot and commercial sonochemical reactors. In this work, a pilot reactor for laccase-hydrogen peroxide cotton bleaching assisted by ultrasound was scaled-up. For this purpose, an existing dyeing machine was transformed and adapted by including piezoelectric ultrasonic devices. Laboratory experiments demonstrated that both low frequency, high power (22 kHz, 2100 W) and high frequency, low power ultrasounds (850 kHz, 400 W) were required to achieve satisfactory results. Standard half (4 g/L H2O2 at 90 °C for 60 min) and optical (8 g/L H2O2 at 103 °C for 40 min) cotton bleaching processes were used as references. Two sequential stages were established for cotton bleaching: (1) laccase pretreatment assisted by high frequency ultrasound (850 kHz, 400 W) and (2) bleaching using high power ultrasound (22 kHz, 2100 W). When compared with conventional methods, combined laccase-hydrogen peroxide cotton bleaching with ultrasound energy improved the whitening effectiveness. Subsequently, less energy (temperature) and chemicals (hydrogen peroxide) were needed for cotton bleaching thus resulting in costs reduction. This technology allowed the combination of enzyme and hydrogen peroxide treatment in a continuous process. The developed pilot-scale reactor offers an enhancement of the cotton bleaching process with lower environmental impact as well as a better performance of further finishing operations.  相似文献   

16.
《Ultrasonics sonochemistry》2014,21(3):1206-1212
The decoloration of reactive dye C.I. Reactive Blue 19 (RB 19) using combined ultrasound with the Fenton process has been investigated. The effect of varying the concentrations of hydrogen peroxide and iron sulfate, initial pH, ultrasonic power, initial dye concentration and dissolved gas on the decoloration and degradation efficiencies was measured. Calibration of the ultrasound systems was performed using calorimetric measurements and oxidative species monitoring using the Fricke dosimeter and degradations were carried out with a 20 kHz probe type transducer at 2, 4, 6 and 8 W cm−2 of acoustic intensity at 15, 25, 50 and 75 mg L−1 initial dye concentrations. First order rate kinetics was observed. It was found that while the degradation rate due to ultrasound alone was slow, sonication significantly accelerated the Fenton reaction. While the results were similar to those reported for other dyes, the effects occurred at lower concentrations. The rate and extent of decoloration of RB 19 increased with rising hydrogen peroxide concentration, ultrasonic powers and iron sulfate concentration but decreased with increasing dye concentration. An optimum pH value of pH = 3.5 was found. The rate of decoloration was higher when dissolved oxygen was present as compared with nitrogen and argon confirming the solution phase mechanism of the degradation.  相似文献   

17.
《Ultrasonics sonochemistry》2014,21(3):1026-1029
Sonoluminescence spectra collected from 0.1 to 3.0 M aqueous solutions of formic acid sparged with argon show the OH(A2Σ+−X2Πi) and C2(d3Πg  a3Πu) emission bands and a broad continuum typical for multibubble sonoluminescence. The overall intensity of sonoluminescence and the sonochemical yield of HCOOH degradation vary in opposite directions: the sonoluminescence is quenched while the sonochemical yield increases with HCOOH concentration. By contrast, the concentration of formic acid has a relatively small effect on the intensity of C2 Swan band. It is concluded that C2 emission originates from CO produced by HCOOH degradation rather than from direct sonochemical degradation of HCOOH. The intensity of C2 band is much stronger at high ultrasonic frequency compared to 20 kHz ultrasound which is in line with higher yields of CO at high frequency. Another product of HCOOH sonolysis, carbon dioxide, strongly quenches sonoluminescence, most probably via collisional non-radiative mechanism.  相似文献   

18.
Sonochemical degradation of 4-chlorophenol, phenol, catechol and resorcinol was studied under Ar at 200 kHz in the absence and presence of Na2SO4 or NaCl. The rates of sonochemical degradation in the absence of salts decreased in the order 4-chlorophenol > phenol > catechol > resorcinol and this order was in good agreement with the order of log P (partition coefficient) value of each phenolic compound. The effects of salts on the rates of sonochemical degradation consisted of no effect or slight negative or positive effects. We discussed these unclear results based on two viewpoints: one was based on the changes in pseudo hydrophobicity and/or diffusion behavior of phenolic compounds and the other was based on the changes in solubility of Ar gas. The measured log P value of each phenolic compound slightly increased with increasing salt concentration. In addition, the dynamic surface tension for 4-chlorophenol aqueous solution in the absence and presence of Na2SO4 or NaCl suggested that phenolic compounds more easily accumulated at the interface region of bubbles at higher salt concentration. These results indicated that the rates of sonochemical degradation should be enhanced by the addition of salts. On the other hand, the calculated Ar gas solubility was confirmed to decrease with increasing salt concentration. The yield of H2O2 formed in the presence of Na2SO4 or NaCl decreased with increasing salt concentration. These results suggested that sonochemical efficiency decreased with decreasing gas amount in aqueous solution: a negative effect of salts was observed. Because negative and positive effects were induced simultaneously, we concluded that the effects of salts on the rates of sonochemical degradation of phenolic compounds became unclear. The products formed from sonochemical degradation of 4-chlorophenol were also characterized by HPLC analysis. The formation of phenol and 4-chloro-1,3-dihydroxy benzene was confirmed and these concentrations were affected by the presence of salts.  相似文献   

19.
In the silicon wet etching process, the “pseudo-mask” formed by the hydrogen bubbles generated during the etching process is the reason causing high surface roughness and poor surface quality. Based upon the ultrasonic mechanical effect and wettability enhanced by isopropyl alcohol (IPA), ultrasonic agitation and IPA were used to improve surface quality of Si (1 1 1) crystal plane during silicon wet etching process. The surface roughness Rq is smaller than 15 nm when using ultrasonic agitation and Rq is smaller than 7 nm when using IPA. When the range of IPA concentration (mass fraction, wt%) is 5–20%, the ultrasonic frequency is 100 kHz and the ultrasound intensity is 30–50 W/L, the surface roughness Rq is smaller than 2 nm when combining ultrasonic agitation and IPA. The surface roughness Rq is equal to 1 nm when the mass fraction of IPA, ultrasound intensity and the ultrasonic frequency is 20%, 50 W and 100 kHz respectively. The experimental results indicated that the combination of ultrasonic agitation and IPA could obtain a lower surface roughness of Si (1 1 1) crystal plane in silicon wet etching process.  相似文献   

20.
Ultrasonic irradiation (640 kHz) leads to the effective degradation of 5-methyl-benzotriazole (5-MBT) in O2 saturated aqueous solution. Up to 97% of 5-MBT is eliminated within 2 h of treatment. Upon extended treatment of 6 h, UV absorbance of the n  π1 and π  π1 transitions associated with aromatic and conjugated systems are completely removed, indicating complete destruction of the aromatic system in 5-MBT. The decomposition of 5-MBT follows pseudo-first order kinetics and the observed decomposition rate dropped significantly in the presence of tertiary butyl alcohol. Detailed product studies were performed employing a negative mode ESI LC–MS. Twenty eight intermediate products were detected during ultrasonic mediated degradation of 5-MBT. Reaction pathways are proposed based on the structures of products assigned to observed 28 masses from LC–MS and commonly accepted degradation pathways observed by thermal and hydroxyl radical mediated pathways often associated with ultrasonic treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号