首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The cluster complex Pt2Ru4(CO)18 was used as a precursor to prepare a 60 wt% 1:2 Pt:Ru nanoparticles on carbon (PtRu/C) for use as an electrocatalyst for methanol oxidation. This bimetallic carbonyl cluster complex was found to provide smaller, more uniform bimetallic nanoparticle that exhibited higher electrocatalytic activity than a 60 wt% 1:1 Pt:Ru commercial catalyst from E-Tek. Using bimetallic cluster precursors simplifies the synthetic procedures by reducing the need for high temperature reduction and assures a more intimate mixing of the two different metals. Transmission electron microscopy (TEM) images of the catalyst obtained from the cluster precursor showed bimetallic nanoparticles having a narrow size range of 2–3 nm that were dispersed uniformly over the surface of the support. Images of the commercial catalyst showed particles 3–4 nm in diameter that tended to agglomerate near the edges of the carbon support particles. Cyclic voltammograms of methanol oxidation from the two catalysts showed significantly higher activity for the cluster-derived catalyst. The onset potential for methanol oxidation for the cluster-derived catalyst was approximately 170 mV lower than that of the commercial catalyst at 100 A/g Pt, and approximately 250 mV lower at 400 A/g Pt. * This report is dedicated to Prof. Günter Schmid on the occasion of his 70th birthday.  相似文献   

2.
Highly ordered anodic titania nanotube arrays provide a large surface area for electrodepositing nickel nanoparticles which are used as the catalyst for carbon nanotube growth. Pt and Ru nanoparticles, approximately 3 nm in diameter, are uniformly electrodeposited on the as synthesized titania-supported carbon nanotubes (CNTs), constructing a novel catalyst for electrocatalytic oxidation of methanol. An enhanced and stable catalytic activity is obtained due to the uniformly dispersed Pt and Ru nanoparticles, and the large CNT network facilitating the electron transfer between the adsorbed methanol molecules and the catalyst substrate. An oxidation peak current density of 55 mA/cm2 is achieved at a low Pt load of 0.126 mg/cm2 with a Pt/Ru mole ratio of 1:1.  相似文献   

3.
In this communication we report our research work on low Pt content Pt–Ru–Ir–Sn quaternary catalysts for use in DMFC anodes. The carbon-supported quaternary metal alloy catalyst was synthesized according to the solution reduction method and was deposited onto a carbon fiber paper or a carbon aerogel nanofoam to form the anode for direct methanol fuel cells. The Pt loading of the electrode is 0.1 mg/cm2. The testing results from a three-electrode electrochemical cell show that the simultaneous use of higher Ir (25–35 wt.%) and Sn (10 wt.%) content gives satisfactory stability and higher activity for methanol oxidation than the commercially available E-TEK anode (80%[0.5Pt 0.5Ru]/C on carbon cloth). Energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), scanning electron microscope (SEM), and Bruner–Emmett–Teller method (BET) measurements were carried out to characterize the composition, structure, morphology, and surface area of the developed catalysts.  相似文献   

4.
Mesoporous WC with hexagonal crystal structure was synthesized by a surfactant-assisted polymer method. A new electrocatalyst composed of a small amount of Pt supported on the mesoporous WC exhibited higher activity for electrooxidation of methanol than microporous Pt/WC or Pt/W2C as well as commercial Pt–Ru(1:1)/C catalysts. The mesoporosity and the phase of WC appear important for the high activity. Compared to the commercial Pt–Ru/C catalyst, the Pt/WC (mesoporous) showed the higher activity per mass of Pt by a factor of six even without Ru. Since the catalyst is also stable in electrochemical environment, it could become an alternative electrocatalyst for direct methanol fuel cells.  相似文献   

5.
Platinum–ruthenium (Pt–Ru) nanoparticles were successfully deposited, for the first time, on the surface of SnO2 nanowires grown directly on carbon paper (Pt–Ru/SnO2 NWs/carbon paper) by potentiostatic electrodeposition method. The resultant Pt–Ru/SnO2 NWs/carbon paper composites were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The electrocatalytic activities of these composite electrodes for methanol oxidation were investigated and higher mass and specific activities in methanol oxidation were exhibited as compared to Pt–Ru catalysts deposited on glassy carbon electrode.  相似文献   

6.
Methanol electrooxidation in a 0.5 M sulfuric acid electrolyte containing 1.0 M CH3OH was studied on 30% Pt/carbon and 30% PtRu/carbon (Pt/Ru = 1:1) catalysts using X-ray absorption spectroscopy (XAS). Absorption by Pt and Ru was measured at constant photon energy in the near edge region during linear potential sweeps of 10-50 mV/s between 0.01 and 1.36 V vs rhe. The absorption results were used to follow Pt and Ru oxidation and reduction under transient conditions as well as to monitor Ru dissolution. Both catalysts exhibited higher activity for methanol oxidation at high potential following multiple potential cycles. Correlation of XAS data with the potential sweeps indicates that Pt catalysts lose activity at high potentials due to Pt oxidation. The addition of Ru to Pt accelerates the rate of methanol oxidation at all potentials. Ru is more readily oxidized than Pt, but unlike Pt, its oxidation does not result in a decrease in catalytic activity. PtRu/carbon catalysts underwent significant changes during potential cycling due to Ru loss. Similar current density vs potential results were obtained using the same PtRu/carbon catalyst at the same loading in a membrane electrode assembly half cell with only a Nafion (DuPont) solid electrolyte. The results are interpreted in terms of a bifunctional catalyst mechanism in which Pt surface sites serve to chemisorb and dissociate methanol to protons and carbon monoxide, while Ru surface sites activate water and accelerate the oxidation of the chemisorbed CO intermediate. PtRu/carbon catalysts maintain their activity at very high potentials, which is attributed to the ability of the added Ru to keep Pt present in a reduced state, a necessary requirement for methanol chemisorption and dissociation.  相似文献   

7.
Conducting polymer composite films comprised of polypyrrole (PPy) and multiwalled carbon nanotubes (MWCNTs) [PPy–CNT] were synthesized by in situ polymerization of pyrrole on carbon nanotubes in 0.1 M HCl containing (NH4)S2O8 as oxidizing agent over a temperature range of 0–5 °C. Pt nanoparticles are deposited on PPy–CNT composite films by chemical reduction of H2PtCl6 using HCHO as reducing agent at pH = 11 [Pt/PPy–CNT]. The presence of MWCNTs leads to higher activity, which might be due to the increase of electrochemically accessible surface areas, electronic conductivity and easier charge-transfer at polymer/electrolyte interfaces allowing higher dispersion and utilization of the deposited Pt nanoparticles. A comparative investigation was carried out using Pt–Ru nanoparticles decorated PPy–CNT composites. Cyclic voltammetry demonstrated that the synthesized Pt–Ru/PPy–CNT catalysts exhibited higher catalytic activity for methanol oxidation than Pt/PPy–CNT catalyst. Such kinds of Pt and Pt–Ru particles deposited on PPy–CNT composite polymer films exhibit excellent catalytic activity and stability towards methanol oxidation, which indicates that the composite films is more promising support material for fuel cell applications.  相似文献   

8.
Graphene nanosheet was prepared by modified Hummer’s chemical method and utilized as a catalyst support of PtRu nanoparticles for the electro-oxidation of methanol. Home-made graphene nanosheet was clearly characterized by Raman spectroscopy and we applied colloidal method to synthesize with high metal content of 80 wt.% Pt–Ru catalyst, which is extensively clarified by HR-TEM and XRD analysis. 80 wt.% Pt–Ru/graphene nanosheet catalyst showed superior electrochemical activity toward methanol oxidation compared to Pt–Ru/Vulcan XC-72R. It is due to the significant increase of electrochemical active surface area for better catalyst utilization.  相似文献   

9.
Bamboo-shaped carbon nanotubes (BCNTs), with a large amount of pentagon defects introduced in the walls, were explored as the support of high loaded Pt–Ru catalysts for the anode of direct methanol fuel cells (DMFCs) in comparison with conventional carbon nanotubes (CNTs) and Vulcan XC carbon black. By ethylene glycol reduction, Pt–Ru catalysts with a high loading (60 wt%) and uniform particle size of 2–3 nm were uniformly deposited on BCNTs; while 60 wt% Pt–Ru catalysts on CNTs resulted in significant agglomeration. The Pt–Ru/BCNT catalyst showed the highest activity on methanol oxidation in cyclic voltammetry and highest performance as the anode in a DMFC single cell. Such an enhancement was largely ascribed to an enhanced interaction of the introduced pentagon defects with Pt–Ru, which could promote a high loading and well dispersion of Pt–Ru catalysts and the charge transfer from Pt–Ru to the tubes.  相似文献   

10.
吕艳卓  徐岩  陆天虹  邢巍  张密林 《化学学报》2007,65(16):1583-1587
直接甲醇燃料电池(DMFC)由于具有较多的优点而受到广泛的关注. 但是碳载Pt (Pt/C)阳极催化剂电催化活性低是限制其应用的一个主要问题. 为了提高Pt/C催化剂对甲醇氧化的电催化性能, 分别用CO2, 空气, H2O2或HNO3对常用作为载体的Vulcan XC-72碳黑进行预处理. 结果表明, 在用CO2, 空气, HNO3, H2O2处理的及未处理的碳黑作载体制得的Pt/C催化剂电极上, 甲醇氧化峰的峰电流密度顺序为39, 33, 32, 20和18 mA•cm-2, 表明用CO2处理的碳载体制备的Pt/C催化剂对甲醇氧化有最好的电催化活性和稳定性. 其主要原因是用CO2处理能减少碳黑表面的含氧基团和增加石墨化程度, 而使碳黑的电阻降低及Pt粒子在碳黑上的分散性变好.  相似文献   

11.
A novel synthesis route, concerning in situ interfacial polymerization of pyrrole on carbon black and following co-deposition of Pt and Fe on polypyrrole–carbon support, is developed to prepare the bimetallic Pt–Fe/polypyrrole–carbon catalyst. In this synthesis process, ferrous precursor simultaneously functions as an oxidant for the polymerization of pyrrole. The Pt–Fe/polypyrrole–carbon catalyst shows improved catalytic activity towards methanol oxidation compared to commercial Pt/C catalyst, which may be of great potential in direct methanol fuel cells.  相似文献   

12.
We have demonstrated a new, cost effective synthesis of single-walled carbon nanotube supported Pt–Fe core–shell alloy catalyst (Pt–Fe/SWNT) for the direct methanol fuel cell using galvanic exchange reaction. The Pt–Fe/SWNTs have shown much larger Pt active surface area (150 m2/g-Pt) than the commercial catalyst (54 m2/g-Pt). Furthermore, four-fold enhancement of catalytic activity of the Pt–Fe/SWNTs for oxygen reduction reaction (ORR) has been observed. This catalyst has also demonstrated its tolerance to methanol in ORR.  相似文献   

13.
Carbon supported platinum–ruthenium alloy catalyst prepared by reverse micelles method for was proposed. The particle size and morphology of catalyst were determined by XRD and TEM and found to be homogeneously dispersed on carbon support with narrow particle size distribution. The performance of the Pt–Ru/C catalyst was tested by cyclic voltammogram and galvanostatic polarization experiments in 1 M sulfuric acid with 2 M methanol solution at room temperature and showed a higher catalytic activity when compared with the standard Pt–Ru/C (E-TEK) catalyst.  相似文献   

14.
Binary Pt–Sn/C (1:1) and ternary Pt–Sn–Ru/C (1:1:0.3 and 1:1:1) catalysts were synthesized by reduction of precursors with formic acid, and their activity for ethanol oxidation was compared with that of commercial Pt/C and Pt–Ru/C catalysts. Linear sweep voltammetry measurements at 40 and 90 °C showed that for potentials higher than 0.3 V vs. RHE, the Pt–Sn–Ru/C (1:1:0.3) catalyst presents the highest activity for ethanol electro-oxidation, while the electrochemical activity of the Pt–Sn–Ru/C (1:1:1) catalyst was lower than that of both the binary Pt–Sn/C and Pt–Ru/C catalysts. Tests in a single direct ethanol fuel cell confirmed the superior performance of the Pt–Sn–Ru/C (1:1:0.3) electrocatalyst. The positive effect of the Ru presence in the Pt–Sn–Ru/C (1:1:0.3) catalyst was ascribed to the interactions between Sn and Ru oxides.  相似文献   

15.
The capillary condensation is affected by micropore and nanopore of catalyst layer on fuel cell. Due to limitation of sluggish mass transport and electrocatalytic activity, to retain the pore skeleton of carbon and metal nanoparticles are very significant for enhanced utilizations of pore structure in electrochemical reaction. Besides, thickness of electrocatalyst layer is very crucial due to one of the factor affected by cell performance of direct methanol fuel cell. Highly loaded four Pt?Ru anode catalysts supported on resorcinol‐formaldehyde (RF) polymer based on meso‐porous carbons (80 wt.% Pt?Ru/carbon cryogel, 80 wt.% Pt?Ru/carbon xerogel and 80 wt.% Pt?Ru/carbon aerogel) and conventional carbon (80 wt.% Pt?Ru/Vulcan XC‐72) were prepared by colloidal method for direct methanol fuel cell. These catalysts were characterized by X‐Ray diffraction (XRD), High resolution transmission electron microscopy (HR‐TEM) and X‐ray photoemission (XPS). The results of CO stripping voltammetry, cyclic voltammetry (CV) and single cell test performed on DMFC show that Pt?Ru/carbon cryogel and Pt?Ru/carbon aerogel exhibits better performances in comparison to Pt?Ru/carbon xerogel and Pt?Ru/Vulcan XC‐72. It is thus considered that particle size, oxidation state of metal and electrochemical active surface area of these catalysts are important role in electrocatalytic activity in DMFC.  相似文献   

16.
The modification of boron-doped diamond powder with metallic oxides using the sol–gel method to prepare high area and very stable electrodes for the methanol oxidation reaction is reported here. The catalyst clusters thus prepared are irregularly distributed on the BDD powder surface having sizes varying between 500 nm and 5 μm and formed by the agglomeration of many nanoparticles. Electrochemical studies in acid media demonstrate that the deposited particles have a good electrical contact with the diamond powder surface and high purity. Moreover, the use of the sol–gel method on a BDD powder substrate leads to the formation of metallic and metallic oxides deposits of the desired composition. The electrocatalyst composite prepared in this manner (Pt–RuOx/BDD powder) shows an excellent activity for methanol oxidation presenting an onset potential 20 mV lower than that observed on a Pt–Ru/C commercial catalyst, probably due to the ruthenium oxide contribution to the overall catalytic activity.  相似文献   

17.
Nanostructured PtRu/C catalysts have been prepared from a water-in-oil pseudomicroemulsion with the aqueous phase of a mixed concentrated solution of H(2)PtCl(6), RuCl(3), and carbon powder, oil phase of cyclohexane, ionic surfactant of sodium dodecylbenzene sulfonate (C(18)H(29)NaO(3)S), and cosurfactant n-butanol (C(4)H(10)O). Two different composing PtRu/C nanocatalysts (catalyst 1, Pt 20 wt %, Ru 15 wt %; catalyst 2, Pt 20 wt %, Ru 10 wt %) were synthesized. The catalysts were characterized by transmission electron microscopy, X-ray diffractometry, X-ray photoelectron spectroscopy, and thermogravimetric analysis, and the particles were found to be nanosized (2-4 nm) and inherit the Pt face-centered cubic structure with Pt and Ru mainly in the zero valance oxidation state. The ruthenium oxide and hydrous ruthenium oxide (RuO(x)()H(y)()) were also found in these catalysts. The cyclic voltammograms (CVs) and chronoamperometries for methanol oxidation on these catalysts showed that catalyst 1 with a higher Ru content (15 wt %) has a higher and more durable electrocatalytic activity to methanol oxidation than catalyst 2 with low Ru content (10 wt %). The CV results for catalysts 1 and 2 strongly support the bifunctional mechanism of PtRu/C catalysts for methanol oxidation. The data from direct methanol single cells using these two PtRu/C as anode catalysts show the cell with catalyst 1 has higher open circuit voltage (OCV = 0.75 V) and maximal power density (78 mW/cm(2)) than that with catalyst 2 (OCV = 0.70 V, P(max) = 56 mW/cm(2)) at 80 degrees C.  相似文献   

18.
Pt–Pd bimetallic nanoparticles supported on graphene oxide (GO) nanosheets were prepared by a sonochemical reduction method in the presence of polyethylene glycol as a stabilizing agent. The synthetic method allowed for a fine tuning of the particle composition without significant changes in their size and degree of aggregation. Detailed characterization of GO-supported Pt–Pd catalysts was carried out by transmission electron microscopy (TEM), AFM, XPS, and electrochemical techniques. Uniform deposition of Pt–Pd nanoparticles with an average diameter of 3 nm was achieved on graphene nanosheets using a novel dual-frequency sonication approach. GO-supported bimetallic catalyst showed significant electrocatalytic activity for methanol oxidation. The influence of different molar compositions of Pt and Pd (1:1, 2:1, and 3:1) on the methanol oxidation efficiency was also evaluated. Among the different Pt/Pd ratios, the 1:1 ratio material showed the lowest onset potential and generated the highest peak current density. The effect of catalyst loading on carbon paper (working electrode) was also studied. Increasing the catalyst loading beyond a certain amount lowered the catalytic activity due to the aggregation of metal particle-loaded GO nanosheets.  相似文献   

19.
The designs of efficient and inexpensive Pt-based catalysts for methanol oxidation reaction (MOR) are essential to boost the commercialization of direct methanol fuel cells. Here, the highly catalytic performance PtFe alloys supported on multiwalled carbon nanotubes (MWCNTs) decorating nitrogen-doped carbon (NC) have been successfully prepared via co-engineering of the surface composition and electronic structure. The Pt1Fe3@NC/MWCNTs catalyst with moderate Fe3+ feeding content (0.86 mA/mgPt) exhibits 2.26-fold enhancement in MOR mass activity compared to pristine Pt/C catalyst (0.38 mA/mgPt). Furthermore, the CO oxidation initial potential of Pt1Fe3@NC/MWCNTs catalyst is lower relative to Pt/C catalyst (0.71 V and 0.80 V). Benefited from the optimal surface compositions, the anti-corrosion ability of MWCNT, strong electron interaction between PtFe alloys and MWCNTs and the N-doped carbon (NC) layer, the Pt1Fe3@NC/MWCNTs catalyst presents an improved MOR performance and anti-CO poisoning ability. This study would open up new perspective for designing efficient electrocatalysts for the DMFCs field.  相似文献   

20.
In this paper, we reported an improved process for the preparation of PtRu/CNTs, which involves the adsorption of Pt and Ru ions on CNTs in aqueous solution and the reduction of the adsorbed Pt and Ru ions on CNTs in ethylene glycol. The surface morphology, structure, and compositions of the prepared catalyst were studied by transmission electron microscopy (TEM), X-ray diffraction (XRD), and energy-dispersive spectrometer. TEM observation showed that the particles size of the prepared PtRu alloy was in the range of 2–5 nm, XRD patterns confirmed a face-centered cubic crystal structure. The activity and stability of the prepared catalyst toward methanol oxidation were studied in 0.5 M H2SO4 + 1 M CH3OH solution by cyclic voltammetry, chronoamperometry, and chronopotentiometry. The electrochemical results showed that the prepared catalyst exhibited higher activity and stability toward methanol oxidation than commercial PtRu/C with the same loading amount of Pt and Ru.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号