首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Structural investigations of bare and surface-modified polystyrene microspheres (beads) have been carried out by infrared-visible sum frequency generation (SFG) vibrational spectroscopy and scanning force microscopy (SFM). Bead surfaces have been modified by either the covalent linking of immunoglobulin G (IgG) and bovine serum albumin (BSA) or the nonspecific adsorption of a Pluronic surfactant. After surface modification with protein, SFG signals in the aliphatic CH-stretch region are detected at both the buffer/bead and air/bead interfaces, indicating that some amino acid residues in proteins adopt preferred orientations. SFG results indicate that the hydrophobic poly(propylene glycol) moieties in the Pluronic order when adsorbed onto the bead, at both the buffer/bead and air/bead interfaces, whereas hydrophilic poly(ethylene glycol) groups align to a lesser extent. SFG spectra also show that the phenyl rings of bare polystyrene beads in contact with air or buffer are ordered, with a dipole component directed along the surface normal, but become less ordered after the adsorption of either proteins or the polymer. Molecular orientation and ordering at the bead surface affect its hydrophobicity and aggregation behavior. SFM results reveal the formation of nonuniform islands when bare beads with more hydrophobic character are spun-cast onto a silica substrate. In the presence of adsorbed protein, a hexagonal packing of beads, with some defects, is observed, depending on the bulk pH and the type of attached protein. Adsorbed Pluronic causes the beads to aggregate in a disordered fashion, as compared to the behavior of bare and protein-modified beads.  相似文献   

2.
The adsorption of a 14-amino acid amphiphilic peptide, LK14, which is composed of leucine (L, nonpolar) and lysine (K, charged), on hydrophobic polystyrene (PS) and hydrophilic silica (SiO2) was investigated in situ by quartz crystal microbalance (QCM), atomic force microscopy (AFM), and sum frequency generation (SFG) vibrational spectroscopy. The LK14 peptide, adsorbed from a pH 7.4 phosphate-buffered saline (PBS) solution, displayed very different coverage, surface roughness and friction, topography, and surface-induced orientation when adsorbed onto PS versus SiO2 surfaces. Real-time QCM adsorption data revealed that the peptide adsorbed onto hydrophobic PS through a fast (t < 2 min) process, while a much slower (t > 30 min) multistep adsorption and rearrangement occurred on the hydrophilic SiO2. AFM measurements showed different surface morphologies and friction coefficients for LK14 adsorbed on the two surfaces. Surface-specific SFG spectra indicate very different ordering of the adsorbed peptide on hydrophobic PS as compared to hydrophilic SiO2. At the LK14 solution/PS interface, CH resonances corresponding to the hydrophobic leucine side chains are evident. Conversely, only NH modes are observed at the peptide solution/SiO2 interface, indicating a different average molecular orientation on this hydrophilic surface. The surface-dependent difference in the molecular-scale peptide interaction at the solution/hydrophobic solid versus solution/hydrophilic solid interfaces (measured by SFG) is manifested as significantly different macromolecular-level adsorption properties on the two surfaces (determined via AFM and QCM experiments).  相似文献   

3.
The kinetics of adsorption of lysozyme and alpha-lactalbumin from aqueous solution on silica and hydrophobized silica has been studied. The initial rate of adsorption of lysozyme at the hydrophilic surface is comparable with the limiting flux. For lysozyme at the hydrophobic surface and alpha-lactalbumin on both surfaces, the rate of adsorption is lower than the limiting flux, but the adsorption proceeds cooperatively, as manifested by an increase in the adsorption rate after the first protein molecules are adsorbed. At the hydrophilic surface, adsorption saturation (reflected in a steady-state value of the adsorbed amount) of both proteins strongly depends on the rate of adsorption, but for the hydrophobic surface no such dependency is observed. It points to structural relaxation ("spreading") of the adsorbed protein molecules, which occurs at the hydrophobic surface faster than at the hydrophilic one. For lysozyme, desorption has been studied as well. It is found that the desorbable fraction decreases after longer residence time of the protein at the interface.  相似文献   

4.
Sum frequency generation (SFG) vibrational spectroscopy has been applied to investigate molecular responses of bovine serum albumin (BSA) molecules adsorbed at different interfacial environments. Molecular level and in situ SFG studies demonstrate that albumin molecules have different adsorption behaviors when contact with fused silica, polystyrene, and poly(methyl methacrylate). Adsorbed albumin molecules exhibit different structural changes when exposed to different chemical environments, including air, water, and hydrophobic solvents. This paper provides direct molecular insight into protein responses to different interfacial environments.  相似文献   

5.
Wang J  Buck SM  Chen Z 《The Analyst》2003,128(6):773-778
The air-BSA solution interface has been investigated by various techniques for years. From these studies we know that BSA molecules segregate at the BSA solution-air interface, and the surface coverage increases with the increase of the bulk solution concentration. However, questions still remain as to whether the protein changes conformation, orientation, or a combination of the two upon adsorption. In this paper, by using sum frequency generation (SFG) vibrational spectroscopy we found that the conformation of interfacial BSA molecules changes dramatically at the solution-air interface, compared to that of the native BSA in solution. The hydrophobic methyl groups of BSA molecules at this interface tend to align along the surface normal. The degree of such conformational changes of surface BSA molecules depend on the surface coverage, indicating that the protein-protein interaction plays a very important role in determining the conformation of interfacial protein molecules. At very low surface concentration, the adsorbed BSA molecules unfold substantially. Our results can provide a molecular interpretation of results obtained from other studies such as protein layer thickness and surface tension measurements of protein solution.  相似文献   

6.
Adsorption studies by optical reflectometry show that complex coacervate core micelles (C3Ms) composed of poly([4-(2-amino-ethylthio)-butylene] hydrochloride)(49)-block-poly(ethylene oxide)(212) and poly([4-(2-carboxy-ethylthio)-butylene] sodium salt)(47)-block-poly(ethylene oxide)(212) adsorb in equal amounts to both silica and cross-linked 1,2-polybutadiene (PB). The C3Ms have an almost glass-like core and atomic force microscopy of a dried layer of adsorbed C3Ms shows densely packed flattened spheres on silica, which very probably are adsorbed C3Ms. Experiments were performed with different types of surfaces, solvents, and proteins; bare silica and cross-linked 1,2-PB, NaNO(3) and phosphate buffer, and lysozyme, bovine serum albumin, beta-lactoglobulin, and fibrinogen. On the hydrophilic surface the coating reduces protein adsorption >90% in 0.1 M phosphate buffer, whereas the reduction on the coated hydrophobic surface is much lower. Reduction is better in phosphate buffer than in NaNO(3), except for the positively charged lysozyme, where the effect is reversed.  相似文献   

7.
Protein adsorption on charged inorganic solid materials has recently attracted enormous interest owing to its various possible applications, including drug delivery and biomaterial design. The need to combine experimental and computational approaches to get a detailed picture of the adsorbed protein properties is increasingly recognised and emphasised in this review. We discuss the methods frequently used to study protein adsorption and the information they can provide. We focus on model systems containing a silica surface, which is negatively charged and hydrophilic at physiological pH, and two contrasting proteins: bovine serum albumin (BSA) and lysozyme (LSZ) that are both water soluble. At pH 7, BSA has a net negative charge, whereas LSZ is positive. In addition, BSA is moderately sized and flexible, whereas LSZ is small and relatively rigid. These differences in charge and structural nature capture the role of electrostatics and hydrophobic interactions on the adsorption of these proteins, along with the impact of adsorption on protein orientation and function. Understanding these model systems will undoubtedly enhance the potential to extrapolate our knowledge to other systems of interest.  相似文献   

8.
Protein adsorption behavior is at the heart of many of today's research fields including biotechnology and materials science. With understanding of protein-surface interactions, control over the conformation and orientation of immobilized species may ultimately allow tailor-made surfaces to be generated. In this contribution protein-surface interactions have been examined with particular focus on surface curvature with and without surface chemistry effects. Silica spheres with diameters in the range 15-165 nm with both hydrophilic and hydrophobic surface chemistries have been used as model substrates. Two proteins differing in size and shape, bovine serum albumin (BSA) and bovine fibrinogen (Fg), have been used in model studies of protein binding with detailed secondary structure analysis being performed using infrared spectroscopy (IR) on surface-bound proteins. Although trends in binding affinity and saturation values were similar for both proteins, albumin is increasingly less ordered on larger substrates, while fibrinogen, in contrast, loses secondary structure to a greater extent when adsorbing onto particles with high surface curvature. These effects are compounded by surface chemistry, with both proteins becoming more denatured on hydrophobic surfaces. Both surface chemistry and topography play key roles in determining the structure of the bound proteins. A model of the binding characteristics of these two proteins onto surfaces having differing curvature and chemistry is presented. We propose that properties of an adsorbed protein layer may be guided through careful consideration of surface structure, allowing the fabrication of materials/surface coatings with tailored bioactivity.  相似文献   

9.
The adsorption of trypsin onto polystyrene and silica surfaces was investigated by reflectometry, spectroscopic methods, and atomic force microscopy (AFM). The affinity of trypsin for the hydrophobic polystyrene surface was higher than that for the hydrophilic silica surface, but steady-state adsorbed amounts were about the same at both surfaces. The conformational characteristics of trypsin immobilized on silica and polystyrene nanospheres were analyzed in situ by circular dichroism and fluorescence spectroscopy. Upon adsorption the trypsin molecules underwent structural changes at the secondary and tertiary level, although the nature of the structural alterations was different for silica and polystyrene surfaces. AFM imaging of trypsin adsorbed on silica showed clustering of enzyme molecules. Rinsing the silica surface resulted in 20% desorption of the originally adsorbed enzyme molecules. Adsorption of trypsin on the surface of polystyrene was almost irreversible with respect to dilution. After adsorption on silica the enzymatic activity of trypsin was 10 times lower, and adsorbed on polystyrene the activity was completely suppressed. The trypsin molecules that were desorbed from the sorbent surfaces by dilution with buffer regained full enzymatic activity.  相似文献   

10.
Structural changes of fibrinogen after adsorption to polystyrene (PS) were examined at the PS/protein solution interface in situ using sum frequency generation (SFG) vibrational spectroscopy and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). Different behaviors of hydrophobic side chains and secondary structures of adsorbed fibrinogen molecules have been observed. Our results indicate that upon adsorption, the hydrophobic PS surface induces fast structural changes of fibrinogen molecules by aligning some hydrophobic side chains in fibrinogen so that they face to the surface. Such structural changes of fibrinogen hydrophobic side chains are local changes and do not immediately induce significant changes of the protein secondary structures. Our research also shows that the interactions between adsorbed fibrinogen and the PS surface can induce significant changes of protein secondary structures or global conformations which occur on a much longer time scale.  相似文献   

11.
Adsorption of the cationic salivary proteins lactoferrin, lactoperoxidase, lysozyme and histatin 5 to pure (hydrophilic) and methylated (hydrophobized) silica surfaces was investigated by in situ ellipsometry. Effects of concentration (≤10 μg ml−1, for lysozyme ≤200 μg ml−1) and dependence of surface wettability, as well as adsorption kinetics and elutability of adsorbed films by buffer and sodium dodecyl sulphate (SDS) solutions were investigated. Results showed that the amounts adsorbed decreased in the order lactoferrin  lactoperoxidase > lysozyme  histatin 5. On hydrophilic silica, the adsorption was most likely driven by electrostatic interactions, which resulted in adsorbed amounts of lactoferrin that indicated the formation of a monolayer with both side-on and end-on adsorbed molecules. For lactoperoxidase the adsorbed amounts were somewhat higher than an end-on monolayer, lysozyme adsorption showed amounts corresponding to a side-on monolayer, and histatin 5 displayed adsorbed amounts in the range of a side-on monolayer. On hydrophobized substrata, the adsorption was also mediated by hydrophobic interactions, which resulted in lower adsorbed amounts of lactoferrin and lactoperoxidase; closer to side-on monolayer coverage. For both lysozyme and histatin 5 the adsorbed amounts were the same as on the hydrophilic silica. The investigated proteins exhibited fast adsorption kinetics, and the initial kinetics indicated mass transport controlled behaviour at low concentrations on both types of substrates. Buffer rinsing and SDS elution indicated that the proteins in general were more tightly bound to the hydrophobized surface compared to hydrophilic silica. Overall, the surface activity of the investigated proteins implicates their importance in the salivary film formation.  相似文献   

12.
The efficiency of a pre-absorbed bovine serum albumin (BSA) layer in blocking the non-specific adsorption of different proteins on hydrophobic and hydrophilic surfaces was evaluated qualitatively and quantitatively using infrared reflection spectroscopy supported by spectral simulations. A BSA layer with a surface coverage of 35% of a close-packed monolayer exhibited a blocking efficiency of 90–100% on a hydrophobic and 68–100% on a hydrophilic surface, with respect to the non-specific adsorption of concanavalin A (Con A), immunoglobulin G (IgG), and staphylococcal protein A (SpA). This BSA layer was produced using a solution concentration of 1 mg/mL and 30 min incubation time. BSA layers that were adsorbed at conditions commonly employed for blocking (a 12 h incubation time and a solution concentration of 10 mg/mL) exhibited a blocking activity that involved competitive adsorption–desorption. This activity resulted from the formation of BSA–phosphate surface complexes, which correlated with the conformation of adsorbed BSA molecules that was favourable for blocking. The importance of optimisation of the adsorbed BSA layer for different surfaces and proteins to achieve efficient blocking was addressed in this study.  相似文献   

13.
Sum frequency generation (SFG) vibrational spectroscopy was used to study the structure of water at cross-linked PEO film interfaces in the presence of human serum albumin (HSA) protein. Although PEO is charge neutral, the PEO film/water interface exhibited an SFG signal of water similar to that of a highly charged water/silica interface, signifying the presence of ordered water. Ordered water molecules were observed not only at the water/PEO interface, but also within the PEO film. It indicates that the PEO and water form an ordered hydrogen-bonded network extending from the bulk PEO film into liquid water, which can provide an energy barrier for protein adsorption. Upon exposure to the protein solution, the SFG spectra of water at the water/PEO interface remained nearly unperturbed. For comparison, the SFG spectra of water/silica and water/polystyrene interfaces were also studied with and without HSA in the solution. The SFG spectra of the interfacial water were correlated with the amount of protein adsorbed on the surfaces using fluorescence microscopy, which showed that the amount of protein adsorbed on the PEO film was about 10 times less than that on a polystyrene film and 3 times less than that on silica.  相似文献   

14.
The amounts of negatively charged bovine serum albumin and positively charged lysozyme adsorbed on alumina, silica, titania, and zirconia particles (diameters 73 to 271 nm) in aqueous suspensions are measured. The adsorbed proteins change the zeta potentials and the isoelectric points (IEP) of the oxide particles. The added to adsorbed protein ratios at pH 7.5 are compared with the protein treated particle zeta potentials. It is found that the amounts of adsorbed proteins on the alumina, silica, and titania (but not on the zirconia) particle surfaces are highly correlated with the zeta potential. For the slightly less hydrophilic zirconia particles high amounts of protein adsorption are observed even under repulsive electrostatic conditions. One reason could be that the hydrophobic effect plays a more important role for zirconia than electrostatic interaction.  相似文献   

15.
Sum frequency generation (SFG) vibrational spectroscopy was employed to characterize the interfacial structure of eight individual amino acids--L-phenylalanine, L-leucine, glycine, L-lysine, L-arginine, L-cysteine, L-alanine, and L-proline--in aqueous solution adsorbed at model hydrophilic and hydrophobic surfaces. Specifically, SFG vibrational spectra were obtained for the amino acids at the solid-liquid interface between both hydrophobic d(8)-polystyrene (d(8)-PS) and SiO(2) model surfaces and phosphate buffered saline (PBS) at pH 7.4. At the hydrophobic d(8)-PS surface, seven of the amino acids solutions investigated showed clear and identifiable C-H vibrational modes, with the exception being l-alanine. In the SFG spectra obtained at the hydrophilic SiO(2) surface, no C-H vibrational modes were observed from any of the amino acids studied. However, it was confirmed by quartz crystal microbalance that amino acids do adsorb to the SiO(2) interface, and the amino acid solutions were found to have a detectable and widely varying influence on the magnitude of SFG signal from water at the SiO(2)/PBS interface. This study provides the first known SFG spectra of several individual amino acids in aqueous solution at the solid-liquid interface and under physiological conditions.  相似文献   

16.
Nonionic surfactants such as Tween 80 are used commercially to minimize protein loss through adsorption and aggregation and preserve native structure and activity. However, the specific mechanisms underlying Tween action in this context are not well understood. Here, we describe the interaction of the well-characterized, globular protein lysozyme with Tween 80 at solid–water interfaces. Hydrophilic and silanized, hydrophobic silica surfaces were used as substrates for protein and surfactant adsorption, which was monitored in situ, with ellipsometry. The method of lysozyme and Tween introduction to the surfaces was varied in order to identify the separate roles of protein, surfactant, and the protein–surfactant complex in the observed interfacial behavior. At the hydrophobic surface, the presence of Tween in the protein solution resulted in a reduction in amount of protein adsorbed, while lysozyme adsorption at the hydrophilic surface was entirely unaffected by the presence of Tween. In addition, while a Tween pre-coat prevented lysozyme adsorption on the hydrophobic surface, such a pre-coat was completely ineffective in reducing adsorption on the hydrophilic surface. These observations were attributed to surface-dependent differences in Tween binding strength and emphasize the importance of the direct interaction between surfactant and solid surface relative to surfactant–protein association in solution in the modulation of protein adsorption by Tween 80.  相似文献   

17.
We have studied the orientation of the train segments of a poly(methyl methacrylate) (PMMA) adsorbed layer at the CCl4-sapphire interface using surface-sensitive IR-visible sum frequency generation (SFG) spectroscopy. The SFG spectra of PMMA chains adsorbed on sapphire indicate ordered ester methyl groups. In comparison, we did not observe any significant contributions from the backbone methylene and alpha methyl groups, suggesting that these groups are disordered. No change in the structure of the adsorbed layer is observed upon cooling the solvent below the theta temperature; this is consistent with the picture of flat adsorbed chains on the surface. Interestingly, the orientation of the ester methyl groups of a spin-coated PMMA film at the PMMA-sapphire interface is similar to that of the same groups in the chains adsorbed from solution.  相似文献   

18.
Fibronectin (FN), a large glycoprotein found in body fluids and in the extracellular matrix, plays a key role in numerous cellular behaviours. We investigate FN adsorption onto hydrophilic bare silica and hydrophobic polystyrene (PS) surfaces using Fourier transform infrared spectroscopy-attenuated total reflection (FTIR-ATR) in aqueous medium. Adsorption kinetics using different bulk concentrations of FN were followed for 2h and the surface density of adsorbed FN and its time-dependent conformational changes were determined. When adsorption occurs onto the hydrophilic surface, FN molecules keep their native conformation independent of the adsorption conditions, but the amount of adsorbed FN increases with time and the bulk concentration. Although the protein surface density is the same on the hydrophobic PS surface, this has a strong impact on the average conformation of the adsorbed FN layer. Indeed, interfacial hydration changes induced by adsorption onto the hydrophobic surface lead to a decrease in unhydrated beta-sheet content and cause an increase in hydrated beta-strand and hydrated random domain content of adsorbed FN. This conformational change is mainly dependent on the bulk concentration. Indeed, at low bulk concentrations, the secondary structures of adsorbed FN molecules undergo strong unfolding, allowing an extended and hydrated conformation of the protein. At high bulk concentrations, the molecular packing reduces the unfolding of the stereoregular structures of the FN molecules, preventing stronger spreading of the protein.  相似文献   

19.
In this investigation, the structure, stability, and orientation of bovine serum albumin (BSA) adsorbed onto silica particles were studied using differential scanning calorimetry (DSC) and limited proteolysis in combination with mass spectrometry (MS). DSC gave information on the overall structural stability of BSA while limited proteolysis was used to probe the accessibility of enzymatic cleavage sites, thereby yielding information on the orientation and structure of BSA adsorbed to silica surfaces. Thermal investigation of BSA in various buffers, both free in solution and in the adsorbed state, showed that solutes that surround the protein played an important role with respect to the overall structural stability and the structural heterogeneity of BSA. Limited proteolysis with trypsin and chymotrypsin indicated that BSA in the adsorbed state is oriented with domain 2 facing the silica surface. Also, upon adsorption, no additional cleavage sites were exposed. The combination of the results presented in this study implied that BSA molecules adsorbed onto silica particles were significantly reduced in their structural stability, but not to an extent that internal residues within the native structure became fully exposed to the solution.  相似文献   

20.
Quantifying the ordering of adsorbed proteins in situ   总被引:1,自引:0,他引:1  
We have investigated the orientation and conformation of protein molecules at the polystyrene (PS)/protein solution interface using sum frequency generation (SFG) vibrational spectroscopy, supplemented by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). In this research, we studied fibrinogen as a model protein. SFG studies indicate that fibrinogen adopts a bent structure after adsorbing to the PS surface. A broad orientation distribution of fibrinogen coiled-coils at the interface has been quantified by combining SFG and ATR-FTIR measurements. Error analysis for such a deduced distribution was carried out. This research demonstrates that quantitative structural information such as orientational and conformational ordering of proteins at interfaces can be studied using SFG supplemented by other spectroscopic techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号