首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Multiresolution analysis of tempered distributions is studied through multiresolution analysis on the corresponding test function spaces Sr(R), rN0. For a function h, which is smooth enough and of appropriate decay, it is shown that the derivatives of its projections to the corresponding spaces Vj, jZ, in a regular multiresolution analysis of L2(R), denoted by hj, multiplied by a polynomial weight converge in sup norm, i.e., hjh in Sr(R) as j→∞. Analogous result for tempered distributions is obtained by duality arguments. The analysis of the approximation order of the projection operator within the framework of the theory of shift-invariant spaces gives a further refinement of the results. The order of approximation is measured with respect to the corresponding space of test functions. As an application, we give Abelian and Tauberian type theorems concerning the quasiasymptotic behavior of a tempered distribution at infinity.  相似文献   

2.
We establish a duality formula for the problem Minimize f(x)+g(x) for h(x)+k(x)<0 where g, k are extended-real-valued convex functions and f, h belong to the class of functions that can be written as the lower envelope of an arbitrary family of convex functions. Applications in d.c. and Lipschitzian optimization are given.  相似文献   

3.
Since Dantzig—Wolfe's pioneering contribution, the decomposition approach using a pricing mechanism has been developed for a wide class of mathematical programs. For convex programs a linear space of Lagrangean multipliers is enough to define price functions. For general mathematical programs the price functions could be defined by using a subclass of nondecreasing functions. However the space of nondecreasing functions is no longer finite dimensional. In this paper we consider a specific nonconvex optimization problem min {f(x):h j (x)g(x),j=1, ,m, xX}, wheref(·),h j (·) andg(·) are finite convex functions andX is a closed convex set. We generalize optimal price functions for this problem in such a way that the parameters of generalized price functions are defined in a finite dimensional space. Combining convex duality and a nonconvex duality we can develop a decomposition method to find a globally optimal solution.This paper is dedicated to Phil Wolfe on the occasion of his 65th birthday.  相似文献   

4.
Let h(x) = e?αxk(x), where and λ0=0. The closure theorem, Vh = L1(?), is proved for various α and k (Vh is the L1-closed variety generated by h). The Tauberian condition, |?| > 0, is not used, since generally this condition is difficult to compute directly. The functions h arise naturally in time series and analytic number theory. The technique of proof is constructive and depends on the semigroup {γj} generated by {λj}. The semigroup theory which consolidates and completes the results herein will be developed separately as “A closure problem for signals in semigroup invariant systems.”  相似文献   

5.
Let At(i, j) be the transition matrix at time t of a process with n states. Such a process may be called self-adjusting if the occurrence of the transition from state h to state k at time t results in a change in the hth row such that At+1(h, k) ? At(h, k). If the self-adjustment (due to transition hkx) is At + 1(h, j) = λAt(h, j) + (1 ? λ)δjk (0 < λ < 1), then with probability 1 the process is eventually periodic. If A0(i, j) < 1 for all i, j and if the self-adjustment satisfies At + 1(h, k) = ?(At(h, k)) with ?(x) twice differentiable and increasing, x < ?(x) < 1 for 0 ? x < 1,?(1) = ?′(1) = 1, then, with probability 1, lim At does not exist.  相似文献   

6.
Let Ω be a domain in Rn and T = ∑j,k = 1n(?j ? ibj(x)) ajk(x)(?k ? ibk(x)), where the ajk and the bj are real valued functions in C1(Ω), and the matrix (ajk(x)) is symmetric and positive definite for every x ? Ω. If T0 is the same as T but with bj = 0, j = 1,…, n, and if u and Tu are in Lloc1(Ω), then T. Kato has established the distributional inequality T0 ¦ u ¦ ? Re[(sign ū) Tu]. He then used this result to obtain selfadjointness results for perturbed operators of the form T ? q on Rn. In this paper we shall obtain Kato's inequality for degenerate-elliptic operators with real coefficients. We then use this to get selfadjointness results for second order degenerate-elliptic operators on Rn.  相似文献   

7.
The univariate multiquadric function with centerx j R has the form {? j (x)=[(x?x j )2+c 2]1/2, x∈R} wherec is a positive constant. We consider three approximations, namely, ? A f, ?? f, and ? C f, to a function {f(x),x 0xx N } from the space that is spanned by the multiquadrics {? j :j=0, 1, ...,N} and by linear polynomials, the centers {x j :j=0, 1,...,N} being given distinct points of the interval [x 0,x N ]. The coefficients of ? A f and ?? f depend just on the function values {f(x j ):j=0, 1,...,N}. while ? A f, ? C f also depends on the extreme derivativesf′(x 0) andf′(x N ). These approximations are defined by quasi-interpolation formulas that are shown to give good accuracy even if the distribution of the centers in [x 0,x N ] is very irregular. Whenf is smooth andc=O(h), whereh is the maximum distance between adjacent centers, we find that the error of each quasi-interpolant isO(h 2|logh|) away from the ends of the rangex 0xx N. Near the ends of the range, however, the accuracy of ? A f and ?? f is onlyO(h), because the polynomial terms of these approximations are zero and a constant, respectively. Thus, some of the known accuracy properties of quasiinterpolation when there is an infinite regular grid of centers {x j =jh:jF} given by Buhmann (1988), are preserved in the case of a finite rangex 0xx N , and there is no need for the centers {x j :j=0, 1, ...,N} to be equally spaced.  相似文献   

8.
Let jvk, yvk and cvk denote the kth positive zeros of the Bessel functions Jv(x), Yv(x) and of the general cylinder function Cv(x) = cos αJv(x)?sin αYv(x), 0 ? α < π, respectively. In this paper we extend to cvk, k = 2, 3,..., some linear inequalities presently known only for jvk. In the case of the zeros yvk we are able to extend these inequalities also to k = 1. Finally in the case of the first positive zero jv1 we compare the linear enequalities given in [9] with some other known inequalities.  相似文献   

9.
A resolution method for multiobjective problems, based on a maximin criterion, is developed. Given the multiobjective problem Max{Ax=b,x?0}{cix; i = 1,2,…,k}, we suppose that the decisor can construct, for each i, a function hi:RR (or hi:Rn→-R), such that hi(ci,x) is his satisfaction degree produced by the value cix, and we substitute the original problem by Max{Ax=b,x?0~mini{hi(cix)}. We analize its resolution and basic properties.  相似文献   

10.
For the equation $$Lu = \frac{1}{i}\frac{{du}}{{dt}}\sum\nolimits_{j = 0}^m {A_j u} (l - h_j^0 - h_j^1 (t)) = f(t),$$ whereh 0 o =0,h 0 1 =0 (t) ≡ 0,h j o = const > 0,h 1 j (t),j= 1, ...,m are nonnegative continuously differentiable functions in [0, ∞), Aj are bounded linear operators, under conditions on the resolvent and on the right hand sidef(t), we have obtained an asymptotic formula for any solution u(t) from L2 in terms of the exponential solutions uk(t), k=1, ..., n, of the equation $$\frac{1}{i}\frac{{du}}{{dt}} - A_0 u - \sum\nolimits_{j = 0}^m {A_j u} (t - h_j^0 ) = 0,$$ connected with the poles λk, k=1, ..., n, of the resolvent Rλ in a certain strip.  相似文献   

11.
In this paper, we discuss the inverse problem for indefinite Sturm-Liouville operators on the finite interval [a, b]. For a fixed index n(n = 0, 1, 2, ··· ), given the weight function ω(x), we will show that the spectral sets {λ n (q, h a , h k )} +∞ k=1 and {λ-n (q, h b , h k )} +∞ k=1 for distinct h k are sufficient to determine the potential q(x) on the finite interval [a, b] and coefficients h a and h b of the boundary conditions.  相似文献   

12.
It is known that if a smooth function h in two real variables x and y belongs to the class Σn of all sums of the form Σnk=1ƒk(x) gk(y), then its (n + 1)th order "Wronskian" det[hxiyj]ni,j=0 is identically equal to zero. The present paper deals with the approximation problem h(x, y) Σnk=1ƒk(x) gk(y) with a prescribed n, for general smooth functions h not lying in Σn. Two natural approximation sums T=T(h) Σn, S=S(h) Σn are introduced and the errors |h-T|, |h-S| are estimated by means of the above mentioned Wronskian of the function h. The proofs utilize the technique of ordinary linear differential equations.  相似文献   

13.
In this paper, a Galerkin type algorithm is given for the numerical solution of L(x)=(r(t)x'(t))'-p(t)x(t)=g(t); x(a)=xa, x'(a)=x'a, where r (t)>f0, and Spline hat functions form the approximating basis. Using the related quadratic form, a two-step difference equation is derived for the numerical solutions. A discrete Gronwall type lemma is then used to show that the error at the node points satisfies ek=0(h2). If e(t) is the error function on a?t?b; it is also shown (in a variety of norms) that e(t)?Ch2 and e'(t)?C1h. Test case runs are also included. A (one step) Richardson or Rhomberg type procedure is used to show that eRk=0(h4). Thus our results are comparable to Runge-Kutta with half the function evaluations.  相似文献   

14.
We consider the problem of the identification of the time-varying matrix A(t) of a linear m-dimensional differential system y′ = A(t)y. We develop an approximation An,k = ∑nj ? 1cj{Y(tk + τj) Y?1(tk) ? I} to A(tk) for grid points tk = a + kh, k = 0,…, N using specified τj = θjh, 0 < θj < 1, j = 1, …, n, and show that for each tk, the L1 norm of the error matrix is O(hn). We demonstrate an efficient scheme for the evaluation of An,k and treat sample problems.  相似文献   

15.
In this paper we discuss a combinatorial problem involving graphs and matrices. Our problem is a matrix analogue of the classical problem of finding a system of distinct representatives (transversal) of a family of sets and relates closely to an extremal problem involving 1-factors and a long standing conjecture in the dimension theory of partially ordered sets. For an integer n ?1, let n denote the n element set {1,2,3,…, n}. Then let A be a k×t matrix. We say that A satisfies property P(n, k) when the following condition is satisfied: For every k-taple (x1,x2,…,xk?nk there exist k distinct integers j1,j2,…,jk so that xi= aii for i= 1,2,…,k. The minimum value of t for which there exists a k × t matrix A satisfying property P(n,k) is denoted by f(n,k). For each k?1 and n sufficiently large, we give an explicit formula for f(n, k): for each n?1 and k sufficiently large, we use probabilistic methods to provide inequalities for f(n,k).  相似文献   

16.
17.
A ring R is called almost-quasi-commutative if for each x, yR there exist nonzero relatively prime integers j = j(x, y) and k = k(x, y) and a non-negative integer n = n(x, y) such that jxy = k(yx) n . We establish some general properties of such rings, study commutativity of almost-quasi-commutative R, and consider several examples.  相似文献   

18.
The essential self-adjointness of the strongly elliptic operator L = ∑j,k=1n (?j ? ibj(x)) ajk(x)(?k ? ibk(x)) + q(x) acting on C0(Rn) is considered, where the matrix (ajk) is real and symmetric, bj and q are real, ajk and bj are sufficiently smooth, and q?Lloc2. It has been shown by Ural'ceva and also Laptev that if q is bounded below and n ? 3 the minimal operator may not be self-adjoint if the principal coefficients rise too rapidly. Thus a theorem of Weyl for ordinary differential operators does not extend to partial differential operators. In this paper it is shown that if q is bounded below and if the principal coefficients are “well behaved” within a sequence of closed shells which go to infinity, then the minimal operator is self-adjoint. It is also shown that a number of results which were known to be true when q is sufficiently smooth may be extended to include the case where q?Lloc2. The principal tools used are a distribution inequality due to Tosio Kato and a general maximum principle due to Walter Littman.  相似文献   

19.
Given a lattice Λ ? Rn and a bounded function g(x), xRn, vanishing outside of a bounded set, the functions ?(x)g?(x)?maxu∈Λg(u +x), ?(x)?Σu∈Λ g(u +x), and ?+(x)?Σu∈Λ maxv∈Λ min {g(v + x); g(u + v + x)} are defined and periodic mod Λ on Rn. In the paper we prove that ?(x) + ?+(x) ? 2?(x) ≥ ?(x) + h?+(x) ? 2?(x) holds for all xRn, where h(x) is any “truncation” of g by a constant c ≥ 0, i.e., any function of the form h(x)?g(x) if g(x) ≤ c and h(x)?c if g(x) > c. This inequality easily implies some known estimations in the geometry of numbers due to Rado [1] and Cassels [2]. Moreover, some sharper and more general results are also derived from it. In the paper another inequality of a similar type is also proved.  相似文献   

20.
The augmented penalty function is used to solve optimization problems with constraints and for faster convergence while adopting gradient techniques. In this note, an attempt is made to show that, ifx* ∈S maximizes the function $$W(x,\lambda ,{\rm K}) = f(x) - \sum\limits_{j = 1}^n {\lambda _j C_j (x)} - K\sum\limits_{j = 1}^n {C_j ^2 (x)} ,$$ thenx* maximizesf(x) over all thosexS such that $$C_j (x) \leqslant C_j ,j = 1,2, \ldots ,n,$$ under the assumptions that the λ j 's andk are nonnegative, real numbers. Here,W(x, λ,K),f(x), andC j (x),j=1, 2,...,n, are real-valued functions andC j (x) ≥ 0 forj=1, 2,...,n and for allx. The above result is generalized considering a more general form of the augmented penalty function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号