首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the effect of Rashba spin-orbit coupling on the Hofstadter spectrum of a two-dimensional tight-binding electron system in a perpendicular magnetic field. We obtain the generalized coupled Harper spin-dependent equations which include the Rashba spin-orbit interaction and solve for the energy spectrum and spin polarization. We investigate the effect of spin-orbit coupling on the fractal energy spectrum and the spin polarization for some characteristic states as a function of the magnetic flux α and the spin-orbit coupling parameter. We characterize the complexity of the fractal geometry of the spin-dependent Hofstadter butterfly with the correlation dimension and show that it grows quadratically with the amplitude of the spin-orbit coupling. We study some ground state properties and the spin polarization shows a fractal-like behavior as a function of α, which is demonstrated with the exponent close to unity of the decaying power spectrum of the spin polarization. Some degree of spin localization or distribution around +1 or -1, for small spin-orbit coupling, is found with the determination of the entropy function as a function of the spin-orbit coupling. The excited states show a more extended (uniform) distribution of spin states.  相似文献   

2.
We investigate heavy-hole spin relaxation and decoherence in quantum dots in perpendicular magnetic fields. We show that at low temperatures the spin decoherence time is 2 times longer than the spin relaxation time. We find that the spin relaxation time for heavy holes can be comparable to or even longer than that for electrons in strongly two-dimensional quantum dots. We discuss the difference in the magnetic-field dependence of the spin relaxation rate due to Rashba or Dresselhaus spin-orbit coupling for systems with positive (i.e., GaAs quantum dots) or negative (i.e., InAs quantum dots) g factor.  相似文献   

3.
Majeed Ur Rehman  A A Abid 《中国物理 B》2017,26(12):127304-127304
The present study pertains to the trilayer graphene in the presence of spin orbit coupling to probe the quantum spin/valley Hall effect. The spin Chern-number C_s for energy-bands of trilayer graphene having the essence of intrinsic spin–orbit coupling is analytically calculated. We find that for each valley and spin, C_s is three times larger in trilayer graphene as compared to single layer graphene. Since the spin Chern-number corresponds to the number of edge states,consequently the trilayer graphene has edge states, three times more in comparison to single layer graphene. We also study the trilayer graphene in the presence of both electric-field and intrinsic spin–orbit coupling and investigate that the trilayer graphene goes through a phase transition from a quantum spin Hall state to a quantum valley Hall state when the strength of the electric field exceeds the intrinsic spin coupling strength. The robustness of the associated topological bulk-state of the trilayer graphene is evaluated by adding various perturbations such as Rashba spin–orbit(RSO) interaction αR, and exchange-magnetization M. In addition, we consider a theoretical model, where only one of the outer layers in trilayer graphene has the essence of intrinsic spin–orbit coupling, while the other two layers have zero intrinsic spin–orbit coupling.Although the first Chern number is non-zero for individual valleys of trilayer graphene in this model, however, we find that the system cannot be regarded as a topological insulator because the system as a whole is not gaped.  相似文献   

4.
We study the spin edge states, induced by the combined effect of Bychkov-Rashba spinorbit and Zeeman interactions or of Dresselhaus spin-orbit and Zeeman interactions in a twodimensional electron system, exposed to a perpendicular quantizing magnetic field and restricted by a hard-wall confining potential. We derive an exact analytical formula for the dispersion relations of spin edge states and analyze their energy spectrum versus the momentum and the magnetic field. We calculate the average spin components and the average transverse position of electron. It is shown that by removing the spin degeneracy, spin-orbit interaction splits the spin edge states not only in the energy but also induces their spatial separation. Depending on the type of spin-orbit coupling and the principal quantum number, the Zeeman term in the combination with spin-orbit interaction increases or decreases essentially the splitting of bulk Landau levels while it has a weak influence on the spin edge states.  相似文献   

5.
The quantum states of a two-dimensional electron gas with spin-orbit coupling located in the periodic potential of a lateral-surface superlattice are studied. The spin-split energy bands and the distribution of spin projections in the Brillouin zone are constructed. Bloch oscillations accompanied by spin precession in superlattices with spin-orbit coupling located in a constant electric field are studied.  相似文献   

6.
Recent experiments revealed the unusual strong spin effects with high spin selective transmission of electrons in double-stranded DNA. We propose a new mechanism that the strong spin effects could be understood in terms of the combination of the ehiral structure, spin-orbit coupling, and especially spin-dependent Anderson localization. The presence of chiral structure and spin-orbit coupling of DNA induce weak Fermi energy splitting between two spin polarization states. The intrinsic Anderson localization in generic DNA molecules may result in remarkable enhancement of the spin selective transport. In particular, these two spin states with energy splitting have different localization lengths. Spin up/down channel may have shorter/longer localization length so that relatively less/more spin up/down electrons may tunnel through the system. In addition, the strong length dependence of spin selectivity observed in experiments can be naturally understood. Anderson localization enhanced spin selectivity effect may provide a deeper understanding of spin-selective processes in molecular spintronics and biological systems.  相似文献   

7.
We demonstrate electrical control of the spin relaxation time T1 between Zeeman-split spin states of a single electron in a lateral quantum dot. We find that relaxation is mediated by the spin-orbit interaction, and by manipulating the orbital states of the dot using gate voltages we vary the relaxation rate W identical withT1(-1) by over an order of magnitude. The dependence of W on orbital confinement agrees with theoretical predictions, and from these data we extract the spin-orbit length. We also measure the dependence of W on the magnetic field and demonstrate that spin-orbit mediated coupling to phonons is the dominant relaxation mechanism down to 1 T, where T1 exceeds 1 s.  相似文献   

8.
In lateral quantum dots, the combined effect of both Dresselhaus and Bychkov-Rashba spin-orbit coupling is equivalent to an effective magnetic field +/- B(SO) which has the opposite sign for s(z)= +/- 1/2 spin electrons. When the external magnetic field is perpendicular to the planar structure, the field B(SO) generates an additional splitting for electron states as compared to the spin splitting in the in-plane field orientation. The anisotropy of spin splitting has been measured and then analyzed in terms of spin-orbit coupling in several AlGaAs/GaAs quantum dots by means of resonant tunneling spectroscopy. From the measured values and sign of the anisotropy we are able to determine the dominating spin-orbit coupling mechanism.  相似文献   

9.
An expansion of the nearly free-electron model constructed by Frantzeskakis, Pons, and Grioni [1] describing quantum states at the Bi/Si(111) interface with the giant spin-orbit coupling is developed and applied for the band structure and spin polarization calculation, as well as for the linear response analysis of the charge current and induced spin caused by a dc field and by electromagnetic radiation. It is found that the large spin-orbit coupling in this system may allow resolving the spin-dependent properties even at room temperature and at a realistic collision rate. The geometry of the atomic lattice combined with spin-orbit coupling leads to an anisotropic response for both the current and spin components related to the orientation of the external field. The in-plane dc electric field produces only the in-plane components of spin in the sample, while both the in-plane and out-of-plane spin components can be excited by normally propagating electromagnetic wave with different polarizations.  相似文献   

10.
We present a new model for the study of spin-orbit coupling in interacting quasi-one-dimensional systems and solve it exactly to find the spectral properties of such systems. We show that the combination of spin-orbit coupling and electron-electron interactions results in the replacement of separate spin and charge excitations with two new kinds of bosonic mixed-spin-charge excitation, and a characteristic modification of the spectral function and single-particle density of states. Our results show how manipulation of the spin-orbit coupling, with external electric fields, can be used for the experimental determination of microscopic interaction parameters in quantum wires.  相似文献   

11.
The ferroelectricity of the spiral magnets LiCu2O2 and LiCuVO4 was examined by calculating the electric polarizations of their spin spiral states on the basis of density-functional theory with spin-orbit coupling. Our work unambiguously reveals that spin-orbit coupling is responsible for the ferroelectricity with the primary contribution from the spin-orbit coupling on the Cu sites, but the asymmetric density distribution responsible for the electric polarization occurs mainly around the O atoms. The electric polarization is calculated to be much greater for the ab-plane than for the bc-plane spin spiral. The observed spin-spiral plane is found to be consistent with the observed direction of the electric polarization for LiCuVO4, but inconsistent for LiCu2O2.  相似文献   

12.
The energy spectrum of light-hole and heavy-hole excitons and optical absorption in a quantum well have been analyzed taking into account Rashba spin-orbit coupling. Interband and intraband exciton transitions have been considered. It has been shown that, in the presence of spin-orbit coupling, the probabilities of the interband and intraband photoelectric effects diverge in the vicinity of the threshold if the electron-hole interaction is neglected. The threshold probabilities of the interband and intraband photoelectric effects become finite when Coulomb interaction is taken into account.  相似文献   

13.
The Thomas-Fermi statistical method is generalized to include spin-orbit interactions. The momentum distributions are given by toroids, different for two particle spin orientations. A system of two coupled differential equations is derived by a variational procedure for the densities of the two populations. From these equations the polarization at the surface of nuclear matter is calculated, as well as the change of the nuclear surface tension due to spin-orbit coupling. Within the statistical framework the coupling strength of the spin-orbit potential is found to be in reasonable agreement with experiment by using only the experimental single-particle level order of the shell model which implies an excess of states with spin parallel to the orbital angular momentum.  相似文献   

14.
The Fermi gas approach to the weak-coupling superconductivity in the non-centrosymmetric systems lead to a conclusion of an approximately spin-orbit coupling independent critical temperature of the singlet states as well as the triplet states defined by the order parameter aligned with the antisymmetric spin-orbit coupling vector. We indicate that the above results follow from a simplified approximation of a density of states by a constant Fermi surface value. Such a scenario does not properly account for the spin-split quasiparticle energy spectrum and reduces the spin-orbit coupling influence on superconductivity to the bare pair-breaking effect of a lifted spin degeneracy. Applying the tight-binding model, which captures the primary features of the spin-split energy band, i.e., its enhanced width and the spin-orbit coupling induced redistribution of the spectral weights in the density of states, we calculate the critical temperature of a non-centrosymmetric superconductor. We report a general tendency of the critical temperature to be suppressed by the antisymmetric spin-orbit coupling. We indicate that, the monotonic decrease of the critical temperature may be altered by the spin-orbit coupling induced van Hove singularities which, when driven to the Fermi level, generate maxima in the phase diagram. Extending our considerations to the intermediate-coupling superconductivity we point out that the spin-orbit coupling induced change of the critical temperature depends on the structure of the electronic energy band and both – the strength and symmetry of the pair potential. Finally, we discuss the mixed singlet-triplet state superconducting instability and establish conditions concerning the symmetry of the singlet and triplet counterparts as well as the range of the spin-orbit coupling energy which make such a phase transition possible.  相似文献   

15.
16.
17.
《Current Applied Physics》2019,19(12):1362-1366
Based on a spin drift-diffusion model, we theoretically investigate the spin-orbit torque in ferromagnet/normal metal/insulator trilayers with considering the Rashba interfacial spin-orbit coupling at the normal metal/insulator interface. We find that the spin-orbit torque shows the opposite normal-metal-thickness dependences for the bulk spin-orbit coupling effect in the normal metal layer and for the interfacial spin-orbit coupling effect at the normal metal/insulator interface, offering a way to disentangle these two spin-orbit coupling effects. Moreover, we show that the conventional interpretation based on the bulk spin-orbit coupling effect overestimates the spin Hall angle and underestimates the spin diffusion length of the normal metal layer, when the interfacial contribution is non-negligible. Our result, a concise analytic expression of the spin-orbit torque considering both bulk and interface spin-orbit coupling effects, will be useful to design and interpret experiments on spin-orbit torque experiments in ferromagnet/normal metal/insulator trilayers.  相似文献   

18.
A differential coupling of topological surface states to left- versus right-circularly polarized light is the basis of many optospintronics applications of topological insulators. Here we report direct evidence of circular dichroism from the surface states of Bi(2)Se(3) using laser-based time-of-flight angle-resolved photoemission spectroscopy. By employing a novel sample rotational analysis, we resolve unusual modulations in the circular dichroism photoemission pattern as a function of both energy and momentum, which perfectly mimic the predicted but hitherto unobserved three-dimensional warped spin texture of the surface states. By developing a microscopic theory of photoemission from topological surface states, we show that this correlation is a natural consequence of spin-orbit coupling. These results suggest that our technique may be a powerful probe of the spin texture of spin-orbit coupled materials in general.  相似文献   

19.
杨圆  陈帅  李小兵 《物理学报》2018,67(23):237101-237101
本文研究了各向同性square-octagon晶格在内禀自旋轨道耦合、Rashba自旋轨道耦合和交换场作用下的拓扑相变,同时引入陈数和自旋陈数对系统进行拓扑分类.系统在自旋轨道耦合和交换场的影响下会出现许多拓扑非平庸态,包括时间反演对称破缺的量子自旋霍尔态和量子反常霍尔态.特别的是,在时间反演对称破缺的量子自旋霍尔效应中,无能隙螺旋边缘态依然能够完好存在.调节交换场或者填充因子的大小会导致系统发生从时间反演对称破缺的量子自旋霍尔态到自旋过滤的量子反常霍尔态的拓扑相变.边缘态能谱和自旋谱的性质与陈数和自旋陈数的拓扑刻画完全一致.这些研究成果为自旋量子操控提供了一个有趣的途径.  相似文献   

20.
We propose an experimental scheme to create spin-orbit coupling in spin-3 Cr atoms using Raman processes. By employing the linear Zeeman effect and optical Stark shift, two spin states within the ground electronic manifold are selected, which results in a pseudospin-1/2 model. We further study the ground state structures of a spin-orbit-coupled Cr condensate. We show that, in addition to the stripe structures induced by the spin-orbit coupling, the magnetic dipole-dipole interaction gives rise to the vortex phase, in which a spontaneous spin vortex is formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号