首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 366 毫秒
1.
The parameters that limit supply of photosensitizer to the cancer cells in a solid tumor were systematically analyzed with the use of microvascular transport modeling and histology data from frozen sections. In particular, the vascular permeability transport coefficient and the effective interstitial diffusion coefficient were quantified for Verteporfin-for-Injection delivery of benzoporphyrin derivative (BPD). Orthotopic tumors had higher permeability and diffusion coefficients (Pd = 0.036 microm/s and D = 1.6 microm(2)/s, respectively) as compared to subcutaneously grown tumors (Pd = 0.025 microm/s and D = 0.9 microm2/s, respectively), likely due to the fact that the vessel patterns are more homogeneous orthotopically. In general, large intersubject and intratumor variability exist in the verteporfin concentration, in the range of 25% in plasma concentration and in the range of 20% for tissue concentrations, predominantly due to these microregional variations in transport. However, the average individual uptake of photosensitizer in tumor tissue was only correlated to the total vascular area within the tumor (R2 = 64.1%, P < 0.001). The data are consistent with a view that microregional variation in the vascular permeability and interstitial diffusion rate contribute the spatial heterogeneity observed in verteporfin uptake, but that average supply to the tissue is limited by the total area of perfused blood vessels. This study presents a method to systematically analyze micro-heterogeneity as well as possible methods to increase delivery and homogeneity of photosensitizer within tumor tissue.  相似文献   

2.
3.
Targeted photodynamic therapy (PDT) combined with image-guided surgical resection is a promising strategy for precision cancer treatment. Prostate-specific membrane antigen (PSMA) is an attractive target due to its pronounced overexpression in a variety of tumors, most notably in prostate cancer. Recently, we reported a pyropheophorbide-based PSMA-targeted agent, which exhibited long plasma circulation time and effective tumor accumulation. To further advance PSMA-targeted photodynamic therapy by harvesting tissue-penetrating properties of the NIR light, we developed a bacteriochlorophyll-based PSMA-targeted photosensitizer (BPP), consisting of three building blocks: (1) a PSMA-affinity ligand, (2) a peptide linker to prolong plasma circulation time and (3) a bacteriochlorophyll photosensitizer for NIR fluorescence imaging and photodynamic therapy (Qy absorption maximum at 750 nm). BPP exhibited excellent PSMA-targeting selectivity in both subcutaneous and orthotopic mouse models. The nine D-peptide linker in BPP structure prolonged its plasma circulation time (12.65 h). Favorable pharmacokinetic properties combined with excellent targeting selectivity enabled effective BPP tumor accumulation, which led to effective PDT in a subcutaneous prostate adenocarcinoma mouse model. Overall, bright NIR fluorescence of BPP enables effective image guidance for surgical resection, while the combination of its targeting capabilities and PDT activity allows for potent and precise image-guided photodynamic treatment of PSMA-expressing tumors.  相似文献   

4.
Laser-induced fluorescence of pheophorbide a (Ph- a ) was used for in vitro photodynamic imaging (PDI) of a rat pancreatic acinar tumor. A 400 nm excitation induced a 470 nm autofluorescence and a 678 nm dye fluorescence in tumors and their surrounding pancreas 24 h after a 9 mg kg−1 body weight Ph- a intravenous administration. With lower intensities in these blood-rich tumors than in pancreas, Ph- a fluorescence signals are unable to provide tumor images. A dimensionless function (the ratio of Ph- a fluorescence by autofluorescence, called Rt for the tumor and Rp for the pancreas) was used for fluorescence contrast calculation (C = Rt/Rp) between six tumors and their paired pancreas. Among five available laser excitation wavelengths, only the 355 nm excitation gave a distinctive contrast (C = 1.5). The PDI of six intrapancreatic tumors and their intraperitoneal metastasis and of two control normal pancreas was thus performed ex vivo using a 355 nm excitation source delivered by a tripled Nd: YAG laser and a charged-coupled device camera. Fluorescence images were recorded at 680 nm (dye), 640 nm (background) and 470 nm (autofluorescence) through three corresponding 10 nm width bandpass filters. Computed division for each pixel of Ph- a fluorescence values by autofluorescence generated false color image. In this way, contrasted tumor images were obtained. But in five out of six animals false-positive images were present due to an autofluorescence decrease in some normal pancreatic areas. A 470 nm autofluorescence imaging on the same tumors gave in all cases false-positive image and false-negative in half of the cases. These observations suggest that autofluorescence alone is unable to achieve accurate PDI of pancreatic carcinoma and that using Ph- a as a PDI dye needs strong improvements.  相似文献   

5.
Longitudinal monitoring of tumor size in vivo can provide important biological information about disease progression and treatment efficacy that is not captured by other modes of quantification. Ultrasound enables high‐throughput evaluation of orthotopic mouse models via fast acquisition of three‐dimensional tumor images and calculation of volume with a reasonable degree of accuracy. Herein, we compare orthotopic pancreatic tumor volume measurements determined by ultrasound with volume measured by calipers and tumor weight, and found strong correlations between the three modalities over a large range of tumor sizes, suggesting ultrasound can accurately quantify tumor volumes in this model. Furthermore, we demonstrate the unique ability of longitudinal treatment monitoring to reveal a tumor size‐dependent response to Benzoporphyrin Derivative photodynamic therapy (BPD‐PDT) and irinotecan. Small tumors (5–35 mm3) were found to respond well to a single round of PDT, while large tumors (35–65 mm3) showed no response to the same treatment. These results highlight the role that tumor size can play in preclinical interpretation of treatment response and more generally suggest that careful evaluation of subtle biological features such as this must be carefully considered in order to grant a more comprehensive understanding of disease biology in vivo.  相似文献   

6.
Abstract— Benzoporphyrin derivative monoacid ring A (BPD), a hydrophobic chlorin-like porphyrin derivative, which fluoresces strongly at 690 nm, may have potential for both oncologic and nononcologic applications in photodynamic therapy (PDT). To study the influence of cellular characteristics on the uptake of BPD, the murine tumor cell line (P815), and in vitro and in vivo concanavalin A (Con A)-stimulated and unstimulated murine splenic lymphocytes were incubated with 2 µg/mL BPD at 37°C for 0–60 min. At various times, cells were lysed and the amount of BPD taken up by the cells was quantified by fluorescence measurements. The subsets of cells taking up BPD were analyzed using a panel of monoclonal antibodies and the Coulter XL* fluorescence-activated cell sorter. Furthermore, Con A-stimulated and unstimulated spleen cells were incubated with 0–50 ng/mL of BPD for 1 h prior to exposure to red light (7.2 J/cm2). Cell survival 24 h post-PDT was measured by the MTT assay. We found that the rapidly dividing tumor cell line and mitogen-stimulated murine T cells (mainly CD4V IL-2R+) took up significantly more BPD (5–10-fold) than do unstimulated splenic lymphocytes. Increased BPD uptake correlated with greater photoinactivation when these cells were exposed to light at a wavelength of 690 nm. These findings suggest that activated cells of the immune system may be a target for photoinactivation by BPD.  相似文献   

7.
9-acetoxy-2,7,12,17-tetrakis-(β-methoxyethyl)-porphycene (ATMPn) is a chemically pure substance with fast pharmacokinetics and superior photodynamic properties in vitro as compared to Photofrin®. In this study the pharmacokinetics, photodynamic efficacy and tissue localization of ATMPn were investigated in vivo.

Amelanotic melanomas (A-Mel-3) were implanted in dorsal skin fold chambers fitted to Syrian Golden hamsters. Fluorescence kinetics of ATMPn (1.4 μmol kg−1 b.w.i.v; n = 8) were monitored by intravital microscopy. Quantitative measurements of fluorescence intensity were carried out by digital image analysis. For tumor growth studies 1.4 μmol kg−1 was injected 24 h (n = 3), 3 h (n = 3), 1 min (n = 6) and 2.8 μmol kg−1 1 min (n = 6) before PDT (Laser (630 nm) or lamp (600–750 nm), 100 mW cm−2, 100 J cm−2). Tumor volume was measured for 28 d. Solid tumors (n = 3) were excised 1 min after injection of ATMPn (2.8 μmol kg−1) and cryostat sections (20 mm) were analyzed by confocal laser scanning microscopy (CLSM) for tissue localization of the dye.

Maximal fluorescence (mean ± S.E.) arose in the tumor (94 ± 7%) and surrounding host tissue (67 ± 5%) 30 s post injection followed by a rapid decrease. Hardly any fluorescence was detectable 12 h after administration. Only PDT 1 min after injection of ATMPn was effective yielding 3/6 complete remissions (2.8 mmol kg−1, laser) and 6/6 complete remissions (2.8 μmol kg−1, lamp), respectively. One minute after injection the dye is primarily localized in the vascular wall of normal and tumor vessels as shown by CLSM.

PDT at a time, when the dye is localized primarily in the tumor microcirculation, exhibits the best tumor killing effects showing that vascular targeting is effective in treating solid malignant tumors. ATMPn in liposomes makes administration and light irradiation in one session possible due to its fast pharmacokinetics. Thus, using ATMPn as a photosensitizer may provide more flexibility to perform PDT after surgical exploration and debulking as adjuvant therapy.  相似文献   


8.
Photodynamic therapy (PDT) has been considered as a potential therapy for superficial bladder carcinomas. Cutaneous photosensitivity and reduction of bladder capacity are the two well-known complications following systemic administration of the commonly used photosensitizer, Photofrin II® (PII). The objective of the present study was to evaluate whether intravesical. (i.b.) instillation of photosensitizers for PDT of bladder cancer might be a more suitable treatment method. Female Fischer rats were utilized to develop orthotopic and heterotopic bladder tumor models. Rats bearing orthotopic bladder tumors were treated either intravesically or intravenously with graded doses of 5-aminolevulinic acid (ALA) or PII. Normal rats received the same doses of ALA or PII. As well, rats bearing heterotopic tumor were studied for comparison. The biodistribution times (times allowed for tissue uptake and bioconversion following drug administration) were 2, 4 or 6 h. Porphyrin fluorescence intensities within tumor, urothelium, submucosa, bladder muscularis and abdominal muscle were quantitated by confocal laser scanning microscopy. Following intravenous (i.v.) injection of ALA, tumor protoporphyrin IX (PpIX) levels peaked at 4 h and diminished by 6 h. The PpIX ratios of tumor-to-bladder mucosa, submucosa and muscle layers were 3:1, 5:1 and 8:1, respectively, 4 h following 1000 mg/kg ALA injection. After ALA instillation, the optimal biodistribution time appeared to be 4 h. Bladder instillation provided comparable tumor labeling with the i.v. route, but lost selectivity of PpIX accumulation between tumor and normal urothelium. The PpIX ratio of tumor-to-bladder muscularis was 5:1. After i.b. instillation of PII, porphyrin fluorescence was detected only within tumor and urothelium, while porphyrin fluorescence was mainly located in bladder submucosa following i.v. injection. Intravesical administration of ALA or PII might be feasible for PDT of superficial bladder cancers.  相似文献   

9.
FLUORESCENCE SPECTRA IN LUNG WITH PORPHYRIN INJECTION   总被引:2,自引:0,他引:2  
The fluorescence emission spectra from human bronchial mucosa and tumors, before and after injection of dihematoporphyrin ether/ester, have been measured with an optical multichannel analyzer from 500 to 750 nm. Fluorescence was excited with a violet krypton ion laser (average wavelength 410 nm). The autofluorescence spectra decrease monotonically with increasing wavelength except for a small broad peak near 600 nm. The spectra from tumor sites, after injection of the fluorescent porphyrin, exhibit the characteristic fluorescence emission at 630 and 690 nm, added to the autofluorescence spectrum. The spectra from control or nontumor sites are similar but the magnitude of the component due to the injected porphyrin is smaller than at a tumor site. The magnitude ratio of tumor to control site fluorescence depends on concentration of the porphyrin, tumor thickness, and time after injection. Autofluorescence degrades contrast and thus makes very thin tumors difficult to image. Subtraction of the autofluorescence background is desirable.  相似文献   

10.
Abstract We compared the effectiveness of three optical techniques based on fluorescence imaging and spectroscopy with indocyanine green (ICG) contrast agent to evaluate in vivo the disruption of the active vasculature induced by a vascular targeting agent. The blood perfusion of the MDA-MB-435 tumor model transplanted in nude mice was estimated from the signal of the contrast agent measured immediately after its systemic injection in mice. Optical measurements were performed using a fluorescence imaging setup and a fiber-based time correlated single photon counting (TCSPC) apparatus. This latter apparatus was used to measure the tumor fluorescence in transmittance geometry and the change in the basal optical absorption induced by the contrast agent, thus providing an alternative estimation of the blood content in the tumor. Mice were divided into four groups. Three groups were treated with different doses of the vascular disrupting agent ZD6126, the fourth group (control group) received the drug vehicle only. Optical measurements were carried out 3 h after pharmacologic treatment. After 24 h, mice were killed, tumors were excised and the extent of necrosis was evaluated with standard histologic analysis. On fluorescence imaging ICG emission from tumors of mice treated with ZD6126 significantly was lower compared with the emission from control mice. The histologic sections also showed a significantly higher amount of necrosis in tumors of treated mice. Both these findings, which correlate with each other, indicate an effective vascular shutdown induced by the drug. However, ICG fluorescence measured with the TCSPC apparatus in transmittance geometry and the estimate of the change in optical absorption did not allow a statistically significant differentiation between treated and control groups.  相似文献   

11.
A system for time-gated fluorescence imaging was used to perform measurements on tumor-bearing mice treated with hematoporphyrin derivative (HpD). The aim of the study was to define the potential of this technique in the diagnosis of tumors by taking advantage of the long fluorescence lifetime of the exogenous dye with respect to the decay times of the natural fluorescence. After the administration of three different drug doses (5, 10 and 25 mg/kg body weight), fluorescence images were acquired at various uptake times (from 2 h to 10 d), to determine the best instrumental conditions and experimental procedure for the detection of tumors in the murine model considered. The optimal fluorescence contrast between the tumor area and the surrounding healthy tissue was found at 12 h after the administration of either 5 or 10 mg/kg HpD and was anticipated at 8 h for the highest drug dose. In this optimum condition, the tumor region could be identified even after the injection of 5 mg/kg HpD. A better fluorescence contrast was always obtained in 15 ns-delayed images with respect to synchronous ones.  相似文献   

12.
Laser-induced fluorescence (LIF) of pheophorbide-a (Ph-a) was used for imaging of a rat pancreatic tumor. Using a dimensionless function (the ratio of Ph-a fluorescence by bluish autofluorescence), the fluorescence contrasts between excised tumors and their paired pancreas were investigated up to 48 h after a 9 mg kg-1 Ph-a intravenous administration. Among five tested excitation wavelengths, 355 and 610 nm excitations gave the best distinctive contrasts, both 48 h after dye injection. The LIF imaging of six intrapancreatic tumors and six healthy pancreas was carried out in vivo using two laser excitations: 355 nm (Nd:YAG + tripling) for bluish autofluorescence and 610 nm (rhodamine 6G dye) for reddish autofluorescence and dye emission. Images were recorded through bandpass filters at 470 and 640 nm (autofluorescence) and at 680 nm (dye + autofluorescence) with an intensified charged-coupled device camera. Autofluorescence as Ph-a fluorescence images did not allow accurate LIF diagnosis of pancreatic carcinoma. An image processing, including for each pixel a computed division of Ph-a fluorescence (after subtraction of reddish autofluorescence) by bluish autofluorescence intensity generated poorly contrasted tumor images in five of six and false tumor localization in one of three of the tumor-bearing pancreas. A fitting of the digital 640 nm autofluorescence up to the mean 680 nm fluorescence intensity in pancreas prior to subtraction allowed a safe diagnosis to be made with well-contrasted tumor images. To assess automation ability of the processing, a same fitting coefficient (mean of individual values) was applied. In this way, false-negative (one of six) and false-positive (two of six) images were present in tumor-bearing animals as false-positive in one-half of the controls. A successful standardized procedure was then applied with a normalization of 640 and 680 nm pancreas intensities to a same set threshold prior processing. In opposition to thin-layered hollow organs, such as bronchial tube or digestive tract, LIF imaging of carcinoma inserted in a compact organ is exhausting. The use of a dye excitable in the red wavelength range (610 nm for Ph-a) may partly solve this problem, rendering LIF imaging more accurate and potentially automated.  相似文献   

13.
Abstract— The fluorescence pharmacokinetics of a series of metallosulfophthalocyanines, chelated with either aluminum or zinc and sulfonated to different degrees, was studied by fluorescence measurements in vivo . Dyes were administered systemically to female WAG/RIJ rats with an isogeneic mammary carcinoma transplanted into the subcutis in a transparent observation chamber located on their backs. Following an intravenous injection of 2.5 μmol/ kg of the dye, fluorescence dynamics was observed up to 7 h postinjection. The phthalocyanines were excited at 610 nm with a power density of 0.1 mW/cm2 without causing photodynamic damage to the vasculature. Fluorescence was detected above 665 nm using a fluorescence imaging system based on an image intensifier. Dye retention in the blood vessels and tumor tissue was expressed as ratios relative to the fluorescence signal of the surrounding subcutaneous tissue. Phthalocyanincs chelated with aluminum gave the highest fluorescence signal with tumor-over-subcutis ratios of up to a value of 4. The zinc complexes exhibited the highest vascular-over-subcutis ratios with maximum values exceeding a value of 6. They also displayed the longest retention times in the vascular system of well over 7 h. Overall, decreasing the degree of sulfonation of the metallophthalocyanines results in lower tumor-over-normal tissue fluorescence ratios, and furthermore aluminum-based dyes seem superior tumor localizers over zinc-based dyes. The advantages of phthalocyanines over porphyrins with respect to tumor localization and photodynamic therapy are discussed.  相似文献   

14.
The antitumor activity of a colon‐specific N‐(2‐hydroxypropyl)methacrylamide (HPMA) copolymer – 9‐aminocamptothecin (9‐AC) conjugate (P‐9‐AC) was assessed in orthotopic and subcutaneous animal (HT29 xenograft) tumor models. P‐9‐AC treatment of mice bearing orthotopic colon tumors, with a dose of 3 mg/kg of 9‐AC equivalent every other day for 6 weeks, resulted in regression of tumors in 9 of 10 mice. A lower dose of P‐9‐AC (1.25 mg/kg of 9‐AC equivalent) every other day for 8 weeks inhibited subcutaneous tumor growth in all mice. No liver metastases were observed. Colon‐specific release of 9‐AC from polymer conjugates enhanced antitumor activity and minimized the systemic toxicity.

  相似文献   


15.
It is urgent to find a technology accurately to better diagnose and treat to brain tumor.Eu-doped Gd2 O3 nanorods(Eu-Gd2 O3 NRs)with paramagnetic and fluorescent properties were conjugated with doxorubicin(Dox)and chlorotoxin(CTX)via PEGylation,hydrazone bond and sulfur bond(named as CTXNRs-Dox),and these NRs could release more Dox in lower pH environment.The results of cell experiments indicated that CTX-NRs-Dox had obvious targeting and toxic effects on U251 cells,as well as good fluorescence imaging behavior.The orthotopic glioma-transplanted mice models were constructed via the intracranial injection of glioma cells(U87 MG).The result of experiments after the tail-vein injection of the prepared NRs suggested that CTX-NRs-Dox could target to brain tumors via the long-time blood circulation,leading to their obvious contrast enhancement of MR imaging of the intracranial tumor and their significant inhibitory effect on the growth and metastasis of brain tumors.A mechanism of synergistic effect of CTX-NRs-Dox on targeting and inhabiting the brain tumor was proposed.Our research suggested that CTX-NRs-Dox had potential application prospect in the detection and treatment of glioma.  相似文献   

16.
In vitro experiments with benzoporphyrin derivative monoacid ring A (BPD) confirmed earlier studies that it was taken up rapidly (within 30 min) to maximum concentrations by all cells tested. It was also confirmed that rapidly dividing tumor cell lines and mitogen-activated murine T lymphocytes took up significantly more (5-10-fold) BPD than did normal splenic lymphocytes. Further experiments were undertaken to determine whether BPD could be activated by whole-body irradiation with red light in the blood of animals, shortly after intravenous (i.v.) administration, in the absence of skin photosensitivity. It was found that shaved and depilated mice injected i.v. 60 min earlier with BPD at between 0.5 and 1.0 mg/kg could tolerate 160 J/cm2 of broad-band red light (560-900 nm) delivered, at a relatively low rate, over a 90 min time interval without developing skin photosensitivity or general phototoxicity. During the treatment time, plasma levels of BPD were between 0.7 and 1.0 μg/mL. The light treatment resulted in between 70 and 80% photoinactivation of circulating BPD. When LI 210 tumor cells were preincubated with BPD and injected i.v. into mice immediately before total-body light treatment (160 J/cm2 of 590-900 nm light delivered over 90 min), significant reductions in circulating clonogenic tumor cells were observed in blood samples taken immediately following treatment. This indicated that sufficient light was being delivered to BPD in the blood flowing in the peripheral vasculature to effect cytotoxicity to cells containing the photosensitizer without causing either vascular or skin photosensitivity. Thus, activation of this photosensitizer in the circulation can be achieved by transdermal light exposure without causing skin photosensitivity provided that light exposure is performed at a time when the first phase of plasma clearance is complete and when the drug has not yet accumulated in skin.  相似文献   

17.
Prognosis of patients with bile duct tumors is mostly poor due to late diagnosis and a lack of adequate curative and palliative treatment modalities. To evaluate the potential of photodynamic therapy (PDT) as a novel and alternative treatment approach, we have investigated the uptake and tumor-specific localization of the photosensitizer Photofrin in human biliary tract neoplasms. We have quantified the distribution and the pharmacokinetics of Photofrin in normal and tumor tissue biopsies of the human bile duct by quantitative fluorescence microscopy and digital image analysis of cryosections. Fluorescence intensities (expressed as a percentage of a standard) are 19.0 +/- 11.4% and 25.2 +/- 12.7% for tumors and 10.9 +/- 2.9% and 13.2 +/- 9.1% (mean +/- SD) for normal bile duct tissue at 24 h (n = 5) and 48 h (n = 8) after Photofrin administration (2 mg kg-1 i.v.), respectively, and decrease afterwards in normal bile duct tissue over the period of investigation (4-35 days). The ratios of fluorescence in tumor versus normal tissue are found to be 1.7 +/- 0.7 and 2.3 +/- 1.2 (mean +/- SD) at days one and two after Photofrin administration, respectively. Thus, Photofrin preferentially accumulates in bile duct neoplasms, reaching peak values during the first two days. These data suggest that laser irradiation should be performed within this period after Photofrin injection to achieve tumor selectivity of PDT for effective treatment of bile duct carcinoma.  相似文献   

18.
Macromolecules accumulate in solid tumors and can thus be used as carriers for the delivery of attached contrast agents to tumors. We report the synthesis and use of serum protein-dye conjugates consisting of transferrin (Tf) or human serum albumin (HSA) and an indotricarbocyanine (ITCC) derivative as contrast agents for the optical imaging of tumors. The compounds were characterized with respect to their photophysical properties and tested in vitro for their ability to bind to tumor cells and in vivo for their potential to delineate experimental tumors. In contrast to HAS-ITTC, Tf-ITCC showed receptor-mediated uptake by HT29 human colon cancer cells in vitro. After intravenous injection into HT29 tumor-bearing nude mice both compounds induced increased fluorescence contrast of tumors in vivo. After 24 h the contrast between tumor and normal tissue was significantly higher for Tf-ITCC than for HAS-ITCC. Dye-induced fluorescence was found to be predominantly located in perinecrotic areas of the tumor. Furthermore, Tf-ITCC produced fluorescence of viable tumor cells, whereas HAS-ITCC fluorescence was recorded along connective tissue. We conclude that ITCC-labeled Tf and HSA can serve as macromolecular contrast agents for the optical imaging of tumors, with Tf-ITCC showing higher efficiency.  相似文献   

19.
An activatable nanoprobe for imaging breast cancer metastases through near infrared-I (NIR-I)/NIR-II fluorescence imaging and multispectral optoacoustic tomography (MSOT) imaging was designed. With a dihydroxanthene moiety serving as the electron donor, quinolinium as the electron acceptor and nitrobenzyloxydiphenylamino as the recognition element, the probe can specifically respond to nitroreductase and transform into an activated D-π-A structure with a NIR emission band extending beyond 900 nm. The activated nanoprobe exhibits NIR emission enhanced by aggregation-induced emission (AIE) and produces strong optoacoustic signal. The nanoprobe was used to detect and image metastases from the orthotopic breast tumors to lymph nodes and then to lung in two breast cancer mouse models. Moreover, the nanoprobe can monitor the treatment efficacy during chemotherapeutic course through fluorescence and MSOT imaging.  相似文献   

20.
Photodynamic therapy (PDT) with verteporfin provides a reliable way to destroy malignant tissues. Changes in the blood flow and oxygen partial pressure (pO2) during verteporfin-PDT were studied here in the tumor tissue of the rat mammary R3230Ac carcinoma model. Oxygen microelectrodes (6-12 microns tip diameter) were used to measure the transients locally within tumors during intravenous injection of 1.0 mg/kg verteporfin followed by irradiation 15 min later with 690 nm light at 200 mW/cm2, for a cumulative dose of 144 J/cm2. The observed changes in pO2 were heterogeneous and there was a difference in the response of low-pO2 regions relative to higher-pO2 regions. The change in pO2 in hypoxic tissue regions (pO2 < 8 mmHg) had acute pO2 loss after treatment, whereas the response in regions of higher pO2 (> 8 mm Hg) was more heterogeneous with some areas maintaining their pO2 value after treatment was completed. Blood flow measurements taken on a subset of the animals indicated a significant loss in flow during the initial light delivery that remained low after treatment, indicating some vascular stasis. The results suggest that hypoxic or poorly perfused vessels may be more susceptible to acute stasis than normoxic vessels in this treatment protocol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号