首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the synthesis of template free zeolite Y and its recrystallization to two types of pure zeolite P and analcime in the presence of the amino acid d‐methionine as structure‐directing agent were investigated. The recrystallization occurred solely when specific heating cycles were applyed. A completely crystallized phase of zeolite Y for the mixture of zeolite P and analcime was observed in the presence of d‐methionine at a concentration of 0.015 <SC>m</SC>. The effect of different Si/Al ratios (2.3–9.3), crystallization temperatures (40–160 °C), and crystallization times (28–96 hours) on the achievement of two different zeolite types were studied as well. Pure zeolite P was obtained during conventional heating to 100 °C for 42 hours, whereas pure analcime zeolite was achieved by heating the mixture to 160 °C for 96 hours. The products were characterized by X‐ray diffraction, scanning electron microscopy, and IR spectroscopy.  相似文献   

2.
Bismuth (Bi)‐containing SBA‐15 mesoporous silica catalysts, Bi/SBA‐15, with different Bi loadings were synthesized by a direct hydrothermal method. The materials were characterized in detail by various techniques. Powder‐X‐ray‐diffraction (PXRD), N2‐adsorption/desorption, and transmission‐electron‐microscopic (TEM) analyses revealed that the well‐ordered hexagonal structure of SBA‐15 is maintained after Bi incorporation. Diffuse‐reflectance UV/VIS, Raman, and X‐ray photoelectron spectroscopy (XPS) showed that the incorporated Bi‐atoms are highly dispersed, most of them entering the internal surface of SBA‐15. The new, very stable catalysts were found to be highly efficient for the oxidation of cyclohexane in a solvent‐free system, molecular oxygen (O2) being used as oxidant.  相似文献   

3.
Novel and innovative hierarchical analcime zeolites were prepared by adding a gemini surfactant which acted as a dual‐functional template. Through a one‐step hydrothermal process, a hierarchical analcime zeolite with abundant intracrystalline mesopores was synthesized. Powder X‐ray diffraction and N2 adsorption–desorption data show that the mesoporous composites possess both a quite a number of mesopores and analcime structure. The results suggest that the dual‐functional template can be effective in the synthesis of hierarchical analcime zeolites.  相似文献   

4.
《中国化学会会志》2017,64(11):1326-1332
Different bismuth molybdate catalysts for the selective oxidation of propylene to acrolein were prepared by the sol–gel method, starting from bismuth nitrate, ammonium molybdate, and citric acid. The influence of pH value and theoretical molar Bi/Mo atomic ratio on the complexation and gelation is surveyed using IR spectroscopy, X‐ray diffraction, and BET. Their catalytic activities for the conversion propylene to acrolein are examined.  相似文献   

5.
Natural zeolite supported nano TiO2 photocatalysts were prepared by a modified electrostatic self‐assembly (ESA) method. First, γ‐mercaptopropyltrimethoxysilane with sulfhydryl (―SH) functional groups was modified on the zeolite powders by using a ‘dry process’. Second, silane with ―SH functional groups was oxidized to sulfonate (―SO3H) groups by using a hydrogen peroxide/glacial acetic acid mixed solution, and the surface of ―SO3H silane–zeolite was electronegative charged due to the ionization of ―SO3H. Third, the hydrolytic titanium polycation from TiCl4 solution assembled onto the electronegative charged zeolite under electrostatic attraction in the reaction solutions. Finally, zeolite supported nano TiO2 photocatalysts can be obtained after the above compounds calcined at certain temperature. The samples were characterized by X‐ray diffraction (XRD), Brunauer–Emmett–Teller (BET) surface areas, Fourier transform infrared spectroscopy (FT‐IR), X‐ray photoelectron spectroscopy (XPS) and X‐ray fluorescence (XRF). The photocatalytic activities of the samples were evaluated by the degradation of methyl orange in aqueous solution. The results showed that ESA method effectively improved the composite efficiency of zeolite with TiO2. The photocatalysts prepared by ESA method exhibited higher photocatalytic and recycling activities than that of traditional method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
The hydrothermal synthesis of analcime (ANA) with N,N′‐dibenzyl‐N,N,N′,N′‐tetramethylethylenediamine (DBTMED) as template was systematically studied. The various parameters that affect the crystallization of analcime, such as temperature, time, Al source, and Si/Al ratio were investigated. Systematic variations of these parameters revealed that ANA was obtained from the reaction mixture with the optimized ratios of SiO2/Al2O3 = 5–9.5 in presence of DBTMED, whereas template‐free clear solution methods require SiO2/Al2O3 ratio of greater than 25. When experiments were conducted at 130 and 150 °C for 4 days, a mixture of analcime and zeolite P was present in the samples, and a pure analcime sample could be obtained with heating in the temperature range 160–180 °C. When microwave and conventional heating were used, analcime could be obtained after 2 days. The obtained products were characterized by XRD, SEM, and IR spectroscopy.  相似文献   

7.
Al/Ni multi‐layers, deposited by magnetron sputtering at room temperature have been studied by complementary techniques; XPS, sputter depth profiling, electron‐induced X‐ray emission spectroscopy (XES) and X‐ray diffraction (XRD). XPS depth profile technique evidenced an atomic diffusion dominated by Ni atoms. Moreover, the Ni diffusion results in the formation of an amorphous phase with a stoichiometry close to the Al3Ni aluminide. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
{[Bi(BTC)(H2O)2] · H2O}n (H3BTC = 1,3,5‐benzenetricarboxylic acid) was synthesized by an eco‐friendly hydrothermal method and characterized by single‐crystal X‐ray diffraction, IR and UV/Vis spectroscopy, photoluminescence (PL), and thermogravimetric analyses. The complex featured a 3D metal‐organic framework with Bi2 secondary building units. In the complex, the central Bi3+ is nine‐coordinate, three central Bi atoms and three BTC3– anions are interconnected into a ring with the dimension of 7.95 × 9.89 Å2. Moreover, the complex is decomposed at over 388 °C, showing its highly thermal stability. Further, the complex exhibits photocatalytic activity for the degradation of methyl orange (MO) solution under UV light irradiation, and its structure can keep consistent with the original one after 9 h photocatalytic reaction, indicating that it is also very stable under UV light. Therefore, it could be anticipated the novel coordination complex will be a stable ultraviolet light catalyst.  相似文献   

9.
Studies on the effects of iron and nickel incorporation into the hydrothermal synthesis of ANA zeolite were carried out. The presented work reveals that pure Fe‐Al analcime is synthesized by using starting composition with a higher iron(III) content than reported in previous publications. Furthermore, the iron(III) and nickel(II) contents play important roles in the framework of the synthesized zeolite. XRD, FT‐IR spectroscopy, diffuse reflectance UV/Vis spectroscopy, nitrogen adsorption and SEM were used to characterize the synthesized zeolites. These investigations showed that loading of iron and nickel ions in ANA zeolite changes the pore size and morphology of analcime zeolite.  相似文献   

10.
Near‐monodisperse Bi‐doped anatase TiO2 nanospheres with almost uniform diameters in the range of 117 to 87 nm were prepared simply by introducing different amounts of bismuth nitrate pentahydrate into the reaction system and subsequent calcinations. X‐ray diffraction, UV‐visible diffuse reflectance spectra, and X‐ray photoelectron spectroscopy confirm that the doped ions substitute some of the lattice titanium atoms, and furthermore, Bi3+ and Bi4+ ions coexist. All the Bi‐doped TiO2 samples show much better photocatalytic activity than pure TiO2 in the degradation of rhodamine B (RhB) under the irradiation of visible light (λ>420 nm), and, interestingly, it was found that the degradation mechanism is different from the conventional one, which has already been reported elsewhere. The detailed mechanism is discussed in this article.  相似文献   

11.
A variety of phosphated zeolite H‐ZSM‐5 samples are investigated by using a combination of Fourier transfer infrared (FTIR) spectroscopy, single pulse 27Al, 29Si, 31P, 1H‐31P cross polarization (CP), 27Al‐31P CP, and 27Al 3Q magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy, scanning transmission X‐ray microscopy (STXM) and N2 physisorption. This approach leads to insights into the physicochemical processes that take place during phosphatation. Direct phosphatation of H‐ZSM‐5 promotes zeolite aggregation, as phosphorus does not penetrate deep into the zeolite material and is mostly found on and close to the outer surface of the zeolite, acting as a glue. Phosphatation of pre‐steamed H‐ZSM‐5 gives rise to the formation of a crystalline tridymite AlPO4 phase, which is found in the mesopores of dealuminated H‐ZSM‐5. Framework aluminum species interacting with phosphorus are not affected by hydrothermal treatment. Dealuminated H‐ZSM‐5, containing AlPO4, retains relatively more framework Al atoms and acid sites during hydrothermal treatment than directly phosphated H‐ZSM‐5.  相似文献   

12.
With new photocatalysts of gold nanoparticles supported on zeolite supports (Au/zeolite), oxidation of benzyl alcohol and its derivatives into the corresponding aldehydes can proceed well with a high selectivity (99 %) under visible‐light irradiation at ambient temperature. Au/zeolite photocatalysts were characterised by UV/Vis, X‐ray photoelectron spectroscopy (XPS), TEM, XRD, energy‐dispersive spectroscopy (EDS), Brauner–Emmet–Teller (BET) analyses, IR and Raman techniques. The surface plasmon resonance (SPR) effect of gold nanoparticles, the adsorption capability of zeolite supports and the molecular polarities of aromatic alcohols were demonstrated to have an essential correlation with the photocatalytic performances. In addition, the effects of light intensity, wavelength range and the role of molecular oxygen were investigated in detail. The kinetic study indicated that the visible‐light irradiation required much less apparent activation energy for photooxidation compared with thermal reaction. Based on the characterisation data and the photocatalytic performances, we proposed a possible photooxidation mechanism.  相似文献   

13.
In this paper, guanidine groups (Gn) supported on modified magnetic nanoparticles (Fe3O4–4,4′‐MDI) were synthesized for the first time. The catalyst synthesized was characterized by various techniques such as SEM (Scanning Electron Microscopy), TEM (Transmission electron microscopy), XRD ( X‐ray Diffraction ), TGA (Thermogravimetric ananlysis), EDS ( Energy‐dispersive X‐ray spectroscopy ) and VSM (vibrating sample magnetometer). The catalyst activity of modified MNPs–MDI‐Gn, as powerful basic nanocatalyst, was probed through the Knoevenagel and Tandem Knoevenagel–Michael‐cyclocondensation reactions. Conversion was high under optimal conditions, and reaction time was remarkably shortened. This nanocatalyst could simply be separated and recovered from the reaction mixture by simple magnetic decantation and reused many times without significant loss of its catalytic activity. Also, the nanocatalyst could be recycled for at least seven (Knoevenagel condensation) and six (Knoevenagel and Tandem Knoevenagel–Michael‐cyclocondensation) additional cycles after they were separated by magnetic decantation and, washed with ethanol, air‐dried, and immediately reused.  相似文献   

14.
《Electroanalysis》2006,18(2):177-185
In this article, the results of some recent investigations on two types of bismuth‐modified carbon paste electrodes are presented. In the first study, the bismuth‐film carbon paste electrode (BiF‐CPE) operated in situ and employed in anodic stripping voltammetry of Cd(II) and Pb(II) at the low μg L?1 level was of interest in view of choosing the proper Bi(III)‐to‐Me(II) concentration ratios (where Me: Pb or Cd). Such optimization has resulted in significant improvement of detection limits down to 1.0 μg L?1 Cd and 0.8 μg L?1 for Pb, which allowed us to apply the BiF‐CPE for analysis of selected real samples of tap and sea water. The BiF‐CPE was also further investigated for its application in highly alkaline media. In this case, attention was focused on the complex‐forming capabilities of the OH ions and their effect on the anodic stripping characteristics of some heavy metals (i.e. Cd, Pb, Tl) as well as upon the formation of the bismuth film itself. The last example deals with the continuing characterization of the recently introduced carbon paste electrodes modified with bismuth powder (Bi‐CPEs) which combine the advantageous properties of carbon paste material with the favorable electrochemical properties of bismuth. Three series of electrodes, differing either in the content of metallic bismuth (from 8 to 50% w/w) or in the type of the carbon powder used (two spectroscopic types of graphite and powdered glassy carbon), were compared and the respective relations to the optimal carbon paste composition evaluated. Attractive electroanalytical performance of the Bi‐CPE in anodic stripping voltammetry is demonstrated for selected model mixtures of heavy metals (Mn, Zn, Cd, Pb, Tl, and In).  相似文献   

15.
韩穗奇  李佳  杨凯伦  林隽 《催化学报》2015,(12):2119-2126
窄带半导体氧化铋(Bi2O3,带宽介于2.1-2.8 eV)因其强的可见光吸收和无毒性等特性而一直被认为是潜在的可见光催化材料.通常, Bi2O3具有a,b,g,d,e和w等六种晶型,其中,a,b和d-Bi2O3具有催化可见光降解有机物的活性.可是,由于其光生电子-空穴复合较快, Bi2O3的光催化活性还很低,远不够实际应用.将半导体与另一种物质如贵金属或其他半导体复合形成异质结是一种有效控制光生电子-空穴复合,提高光催化活性的方法.目前已成功开发了许多Bi2O3基的异质结光催化材料.尤其是通过用卤化氢酸与a-Bi2O3直接作用原位形成的a-Bi2O3与铋的卤氧化合物BiOX (X = Cl, Br或I)的异质结在提高光催化活性和制备方面显示了优越性.然而,具有更强可见光吸收的b-Bi2O3(带宽约2.3 eV)与卤氧化合物的异质结光催化性能却鲜有报道.本文通过用HI原位处理b-Bi2O3形成b-Bi2O3/BiOI异质结.该异质结表现较纯b-Bi2O3和BiOI更高的降解甲基橙(MO)可见光催化活性.通过多晶X射线衍射(XRD)、紫外漫散射(UV-DRS)、扫描电镜、透射电镜(TEM)、X光电子能谱(XPS)和荧光(PL)等手段研究了b-Bi2O3/BiOI异质结,并提出其高催化活性的机理. XRD结果显示,用HI原位处理b-Bi2O3可形成BiOI相,并且随着HI使用量增加,混合物中的BiOI相逐渐增多. HRTEM结果进一步表明,在混合物中的b-Bi2O3和BiOI都是高度结晶态,且两相之间有很好的接触,从而有利于两相之间的电荷移动.根据UV-DRS和ahv =A(hv –Eg)n/2等公式,计算出了b-Bi2O3和BiOI带隙分别为2.28和1.77 eV,以及两种半导体的导带和价带位置. b-Bi2O3的导带和价带位置分别为0.31和2.59 eV,而BiOI的导带和价带位置分别为0.56和2.33 eV.这样两种半导体能带结构呈蜂窝状,显然不适合光生电子-空穴的分离.然而, XPS测定结果显示,b-Bi2O3和BiOI相互接触形成异质结后,b-Bi2O3相的电子向BiOI相发生了明显的移动.根据文献报道,当两种费米能级不同的半导体接触时,电子会从费米能级高的半导体移向费米能级低的半导体,直至建立新的费米能级.b-Bi2O3被报道是典型的n型半导体,其费米能级在上靠近其导带位置;而BiOI是典型的p型半导体,其费米能级在下靠近其价带位置.基于此,我们提出了b-Bi2O3/BiOI异质结高催化活性的机理.当b-Bi2O3与BiOI形成异质结时,由于b-Bi2O3的费米能级较BiOI的高,因而电子从b-Bi2O3转向BiOI,直至新的费米能级形成.因此电子在两相之间移动导致了b-Bi2O3能带结构整体下移,以及BiOI能带结构整体上移,使得新形成的BiOI导带和价带位置高于b-Bi2O3的.当该异质结在可见光的照射下,光生电子将移至b-Bi2O3的导带,而空穴会移至BiOI的价带,最终达到了光生电子-空穴分离的效果,产生高的光催化活性. PL测试也证实了b-Bi2O3/BiOI异质结具有更长的光生电子-空穴寿命.  相似文献   

16.
A novel dinuclear bismuth(III) coordination compound, [Bi2(C7H3NO4)2(N3)2(C12H8N2)2]·4H2O, has been synthesized by an ionothermal method and characterized by elemental analysis, energy‐dispersive X‐ray spectroscopy, IR, X‐ray photoelectron spectroscopy and single‐crystal X‐ray diffraction. The molecular structure consists of one centrosymmetric dinuclear neutral fragment and four water molecules. Within the dinuclear fragment, each BiIII centre is seven‐coordinated by three O atoms and four N atoms. The coordination geometry of each BiIII atom is distorted pentagonal–bipyramidal (BiO3N4), with one azide N atom and one bridging carboxylate O atom located in axial positions. The carboxylate O atoms and water molecules are assembled via O—H...O hydrogen bonds, resulting in the formation of a three‐dimensional supramolecular structure. Two types of π–π stacking interactions are found, with centroid‐to‐centroid distances of 3.461 (4) and 3.641 (4) Å.  相似文献   

17.
An efficient one‐pot method for synthesis of 2,3‐dihydroquinazolin‐4(1H)‐ones and tri/tetra substituted‐1H‐imidazoles has been accomplished in the presence of catalytic amounts of Cu(I)‐1,3‐dimethylbarbituric acid modified SBA‐15 as heterogeneous catalyst with good to excellent yields. The catalyst is reusable and can be applied several times without any decrease in product yield. The synthesized catalyst was characterized by scanning electron microscopy (SEM), X‐ray diffraction (XRD), energy dispersive X‐ray spectroscopy (EDS), thermal gravimetric analysis (TGA), N2 adsorption/desorption isotherms (BET), Fourier transform infrared spectroscopy (FT‐IR) and atomic absorption spectroscopy (AAS).  相似文献   

18.
A high‐sensitivity sensing platform for lead(II) and cadmium(II) based on the bismuth modified carbon nanotubes (CNTs)‐poly(sodium 4‐styrenesulfonate) composite film electrode (CNTs‐PSS/Bi) was fabricated. The composite film CNTs‐PSS/Bi provided remarkably improved sensitivity and reproducibility compared with previously reported CNTs‐modified electrodes. The detection limits were estimated to be 0.04 ppb for lead(II) and 0.02 ppb for cadmium(II) with a preconcentration time of 120 s, respectively. The linear responses of Cd2+ and Pb2+ were over the ranges of 0.5–50 ppb and 0.5–90 ppb, respectively. Finally, the practical application of the proposed method was verified in the real water sample with satisfactory results.  相似文献   

19.
[Ph4P]2[Bi2Br8(CH3COCH3)2] ( 1 ) was obtained by the reaction of [Ph4P]Br and BiBr3 in acetone. Single crystals were grown by allowing a layer of n‐hexane to diffuse into the acetonic solution of 1 . The crystal structure was determined by means of X‐ray diffraction. 1 crystallises with monoclinic symmetry in the space group P21/n, No. 14 with the lattice parameters: a = 13.358(2), b = 12.637(2), c = 18.565(3) Å, β = 102.62(1)°, V = 3058.1(8) Å3 and Z = 4. The structure is characterised by the anion [Bi2Br8(CH3COCH3)2]2– which is embedded in a matrix of [Ph4P]+ cations. The anion can be described as two edge‐sharing square pyramids with the apical bromide ions in anti‐position. Acetone co‐ordinates the bismuth atoms via oxygen atoms and increases the co‐ordination number of central bismuth atoms to six which results in the formation of a distorted bi‐octahedron. The distortion is due to the difference in terminal and bridging Bi–Br bond lengths. FT‐IR and Raman spectroscopic data are presented. In addition, the thermal behaviour of the compound was studied with the aid of TG/DSC coupled with MS revealing that acetone leaves the crystal in two steps. The compound melts at 203 °C and transforms into a glass on cooling.  相似文献   

20.
Acrylonitrile–butadiene–styrene (ABS) nanocomposites containing imidazolium‐modified montmorillonite have been prepared by melt‐blending (MB) and solution‐sonication in order to study the effects of processing on the morphology and properties of the polymer/clay composites. The structure‐property relationships of the prepared composites have been studied by means of X‐ray diffraction (XRD), transmission electron microscopy (TEM), mechanical testing, dynamic‐mechanical analyses (DMA), thermal gravimetrical analyses (TGA), fluorescence probe confocal microscopy, and fluorescence spectroscopy (FS). X‐Ray and TEM show that both nanocomposites have a mixed intercalated/exfoliated structure. Fluorescence probe confocal microscopy reveals that the sonicated sample has a more homogeneous dispersion: this result is confirmed by the values of elongation at break and flexural elastic modulus measured for the composites. Fluorescence spectroscopy has also been used to investigate the distribution of clay in the composites and results indicate that clay layers in ABS are preferentially located in the styrene‐acrylonitrile (SAN) phase, independent of the dispersion process used. Published in 2008 by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号