首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crystals of four amine‐templated uranyl oxoselenates(VI), [C3H12N2][(UO2)(SeO4)2(H2O)2](H2O) ( 1 ), [C5H16N2]2[(UO2)(SeO4)2(H2O)](NO3)2 ( 2 ), [C4H12N][(UO2)(SeO4)(NO3)] ( 3 ), and [C4H14N2][(UO2)(SeO4)2(H2O)] ( 4 ) were prepared by evaporation from aqueous solution of uranyl nitrate, selenic acid and the respective amine. The crystal structures of all four compounds have been solved by direct methods from X‐ray diffraction data. The structure of 1 (triclinic, , a = 7.5611(16), b = 7.7650(17), c = 12.925(3) Å, α = 94.605(18), β = 94.405(17), γ = 96.470(17)°, V = 748.8(3) Å3, R1 = 0.029 for 2769 unique observed reflections) is based upon 0D‐units of the composition [(UO2)2(SeO4)4(H2O)4]4?. These discrete units are composed from two pentagonal [UO7]8? bipyramids linked via [SeO4]2? tetrahedra and are unknown in structural chemistry of uranium so far. The structure of 2 (monoclinic, C2/c, a = 28.916(5), b = 8.0836(10), c = 11.9856(16) Å, β = 110.909(11)°, V = 2617.1(6) Å3, R1 = 0.035 for 2578 unique observed reflections) contains [(UO2)(SeO4)2(H2O)]2? chains of corner‐sharing pentagonal [UO7]8? bipyramids and [SeO4]2? tetrahedra. The chains run parallel to the c axis and are arranged into layers parallel to (100). In the structure of 3 (monoclinic, C2/m, a = 21.244(5), b = 7.1092(11), c = 8.6581(18) Å, β = 97.693(17)°, V = 1295.8(4) Å3, R1 = 0.027 for 1386 unique observed reflections), pentagonal [UO7]8? bipyramids share corners with three [SeO4]2? tetrahedra each and an edge with a [NO3]? anion to form [(UO2)(SeO4)(NO3)]? chains parallel to the b axis. In the structure of 4 (triclinic, , a = 6.853(2), b = 10.537(3), c = 10.574(3) Å, α = 99.62(3), β = 94.45(3), γ = 100.52(3)°, V = 735.6(4) Å3, R1 = 0.045 for 2713 unique observed reflections), one symmetrically independent pentagonal [UO7]8? bipyramid shares corners with four [SeO4]2? tetrahedra to form the [(UO2)(SeO4)2(H2O)]2? chains parallel to the a axis. A comparison to related uranyl compounds is given.  相似文献   

2.
The first sodium uranyl chromate, Na4[(UO2)(CrO4)3], has been obtained by high‐temperature solid‐state reaction. The structure (triclinic, P1¯, Z = 2, a = 7.1548(3), b = 8.4420(3), c = 11.5102(5)Å, α = 80.203(1)°, β = 79.310(1)°, γ = 70.415(1)° V = 639.24(4)Å3 ) has been solved by direct methods and refined on the basis of F2 for all unique reflections to R1 = 0.024 [calculated on the basis of 4374 unique observed reflections (‖Fo‖ 4σF)]. The structure is based on chains of composition [(UO2)(CrO4)3] that are parallel to [1¯01]. The chains contain UrO5 pentagonal bipyramids (Ur = Uranyl) that share all equatorial corners with CrO4 tetrahedra. Cr(1)O4 and Cr(3)O4 tetrahedra bridge between two adjacent UrO5 bipyramids, whereas Cr(2)O4 tetrahedra share one corner with one UrO5 bipyramid each. The [(UO2)(CrO4)3] chains are planar and oriented parallel to (313). The Na+ cations provide linkage of the chains in the structure.  相似文献   

3.
Single crystals of three rubidium uranyl selenates, Rb2[(UO2)(SeO4)2(H2O)](H2O) ( 1 ), Rb2[(UO2)2(SeO4)3(H2O)2](H2O)4 ( 2 ), and Rb4[(UO2)3(SeO4)5(H2O)] ( 3 ), have been prepared by evaporation from aqueous solutions made out of mixtures of uranyl nitrate, selenic acid and Rb2CO3. The structures of all compounds have been solved by direct methods on the basis of X‐ray diffraction data sets. The crystallographic data are as follows: ( 1 ): orthorhombic, Pna21, a = 13.677(2), b = 11.8707(13), c = 7.6397(9) Å, V = 1240.4(3) Å3, R1 = 0.045 for 2396 independent observed reflections; ( 2 ): triclinic, P1¯, a = 8.4261(12), b = 11.8636(15), c = 13.3279(18) Å, α = 102.612(10), β = 107.250(10), γ = 102.510(10)°, V = 1183.7(3) Å3, R1 = 0.067 for 4762 independent observed reflections; ( 3 ): orthorhombic, Pbnm, a = 11.3761(14), b = 15.069(2), c = 19.2089(17) Å, V = 3292.9(7) Å3, R1 = 0.075 for 3808 independent observed reflections. The structures of the phases 1 , 2 , and 3 are based upon uranyl selenate hydrate sheets composed from corner‐sharing pentagonal [UO7]8— bipyramids and [SeO4]2— tetrahedra. In the crystal structure of 1 , the sheets have composition [(UO2)(SeO4)2(H2O)]2— and run parallel to (001). The interlayer contains Rb+ cations and additional H2O molecules. In structure of 2 , the [(UO2)2(SeO4)3(H2O)2]2— sheets are oriented parallel to (101). Highly disordered Rb+ cations and H2O molecules are located between the sheets. The structure of 3 is based upon [(UO2)3(SeO4)5(H2O)]4— sheets stacked parallel to (010) and contains Rb+ cations in the interlayers. The topologies of the uranyl oxoselenate sheets observed in the structures of 1 , 2 , and 3 are related to the same simple and highly‐symmetric graph consisting of 3‐connected white and 6‐connected black vertices.  相似文献   

4.
Two first uranyl chromate nitrates, K[(UO2)(CrO4)(NO3)] ( 1 ) and Rb[(UO2)(CrO4)(NO3)] ( 2 ), were prepared by solid‐state reactions and characterized by electron microprobe analysis and single‐crystal X‐ray diffraction. The compounds are isotypic [ 1 : monoclinic, P21/c, a = 9.881(5), b = 7.215(4), c = 14.226(6) Å, β = 124.85(3)°, V = 832.3(7) Å3; 2 : monoclinic, P21/c, a = 9.804(1), b = 7.359(1), c = 14.269(1) Å, β = 122.048(4), V = 872.6(1) Å3]. The structures of 1 and 2 are based upon the complex [(UO2)(CrO4)(NO3)] layers with unprecedented structural topology, which consist of the UrO3NO3 units linked through CrO4 tetrahedra. The resulted kinked layer can be divided into chains arranged in the ladder fashion. The layers are parallel to (100) and are linked by A+ (A = K, Rb) cations located between the layers.  相似文献   

5.
Two new mixed alkaline uranyl molybdates CsNa3[(UO2)4O4Mo2O8] ( 1 ) and Cs2Na8[(UO2)8O8(Mo5O20)] ( 2 ) have been obtained by high‐temperature solid state reactions. Their crystal structures have been solved by direct methods: Compound 1 : triclinic, P , a = 6.46(1), b = 6.90(1), c = 11.381(2) Å, α = 84.3(1), β = 91.91(1), γ = 80.23(1)°, V = 488.6(2) Å3, R1 = 0.06 for 2865 unique reflections with |Fo| ≥ 4σF; Compound 2 : orthorhombic, Ibam, a = 6.8460(2), b = 23.3855(7), c = 12.3373(3) Å, V = 1975.2(1) Å3, R1 = 0.049 for 2120 unique reflections with |Fo| ≥ 4σF. The structure of 1 contains complex sheets of UrO5 pentagonal bipyramids and molybdenum polyhedra. The sheets have [(UO2)2O2(MoO5)] composition. Natrium and cesium atoms are located in the interlayer space. Cesium atoms are situated between the molybdenum clusters, whereas natrium atoms are segregated between the uranyl complexes. The large Cs+ ions are localized between the Mo2O9 groups and force the molybdenum polyhedra to rotate relative to the [(UO2)2O2(MoO5)] sheets. Such rotation is impossible for U6+ polyhedra due to their rigid edge‐sharing complexes. The distance between the U6+ polyhedra vertices of neighboring layers is 3.8 Å, that allows the Na+ ion to be positioned between the uranyl groups. The crystal structure of 2 is based upon a framework consisting of [(UO2)2O2(MoO5)] sheets parallel to (010). The sheets are linked into a 3‐D framework by sharing vertices with the Mo(2)O4 tetrahedra, located between the sheets. Each MoO4 tetrahedron shares two of its corners with two MoO6 octahedra in the sheet above, and the other two with MoO6 octahedra of the sheet below. Thus four MoO6 octahedra and one MoO4 tetrahedron form chains of composition Mo5O18. The resulting framework has a system of channels occupied by the Cs+ and Na+ ions.  相似文献   

6.
Single crystals of α‐ and β‐Mg2[(UO2)3(SeO4)5](H2O)16 have been synthesized by evaporation from an aqueous solution of the ionic components. The structure of α‐Mg2[(UO2)3(SeO4)5](H2O)16 (monoclinic, C2/c, a = 19.544(3), b = 10.4783(11), c = 18.020(3) Å, β = 91.352(12)°, V = 3689.3(9) Å3) has been solved by direct methods and refined to R1 = 0.048 on the basis of 4338 unique observed reflections. The structure of β‐Mg2[(UO2)3(SeO4)5](H2O)16 (orthorhombic, Pbcm, a = 10.3807(7), b = 22.2341(19), c = 33.739(5) Å, V = 7787.2(14) Å3) has been solved by direct methods and refined to R1 = 0.107 on the basis of 3621 unique observed reflections. The structures of α‐ and β‐Mg2[(UO2)3(SeO4)5](H2O)16 are based upon sheets with the chemical composition [(UO2)3(SeO4)5]4‐. The sheets are formed by corner sharing between pentagonal bipyramids [UO7]8‐ and SeO42‐ tetrahedra. In the α‐modification, the [(UO2)3(SeO4)5]4‐ sheets are more or less planar and run parallel to (001). In the structure of the β‐modification, the uranyl selenate sheets are strongly corrugated and oriented parallel to (010). The [Mg(H2O)6]2+ polyhedra reside in the interlayers and provide three‐dimensional linkage of the uranyl selenate sheets via hydrogen bonding. In addition to H2O groups attached to Mg2+ cations, both structures also contain H2O molecules that are not bonded to any cation. The [(UO2)3(SeO4)5]4‐ sheets in the structures of α‐ and β‐Mg2[(UO2)3(SeO4)5](H2O)16 represent two different structural isomers. The sequences of the orientations of the tetrahedra within the sheets can be described by their orientational matrices with their shortened forms ( ddudd □ /uu □ uud ) and ( dd □ dd □ uu □ uu □ /uuduumdduddm ) for α‐ and β‐Mg2[(UO2)3(SeO4)5](H2O)16, respectively. A short review on the isomerism of [(UO2)3(TO4)5]4‐ sheets (T = S, Cr, Se, Mo) is given.  相似文献   

7.
Yellowish crystals of K2[(UO2)As2O7] ( 1 ) have been synthesized by solid‐state reactions method. The structure of 1 [orthorhombic, Pmmn, a = 12.601(2), b = 13.242(2), c = 5.621(1) Å, V = 937.9(3) Å3, Z = 4] has been solved by direct methods and refined to R1 = 0.049, wR2 = 0.1060 for 1059 observed reflections. The structure of 1 is based upon [(UO2)As2O7]2? sheets formed by corner sharing between [UO6]6? distorted octahedra and [As2O7]4? polyarsenate groups. The K+ cations are either in eightfold or tenfold coordination and are located between the sheets. The topology of the uranyl arsenate sheet is related to silicate minerals of the melilite group and related synthetic silicate, aluminate and germanate compounds.  相似文献   

8.
Three new uranyl polyphosphates, α‐K[(UO2)(P3O9)] ( 1 ), β‐K[(UO2)(P3O9)] ( 2 ), and K[(UO2)2(P3O10)] ( 3 ), were prepared by high‐temperature solid‐state reactions. The crystal structures of the compounds have been solved by direct methods: 1 – monoclinic, P21/m, a = 8.497(1), b = 15.1150(1), c = 14.7890(1) Å, β = 91.911(5)°, V = 1898.3(3) Å3, Z = 4, R1 = 0.0734 for 4181 unique reflections with |F0| ≥ 4σF; 2 – monoclinic, P21/n, a = 8.607(1), b = 14.842(2), c = 14.951(1) Å, β = 95.829(5)°, V = 1900.0(4) Å3, Z = 4, R1 = 0.0787 for 3185 unique reflections with |F0| ≥ 4σF; 3 – Pbcn, a = 10.632(1), b = 10.325(1), c = 11.209(1) Å, V = 1230.5(2) Å3, Z = 4, R1 = 0.0364 for 1338 unique reflections with |F0| ≥ 4σF. In the structures of 1 and 2 , phosphate tetrahedra share corners to form infinite [PO3]? chains, whereas, in the structure of 3 , tetrahedra form linear [P3O10]5? trimers. The structures are based upon 3‐D frameworks of U and P polyhedra linked by sharing common O corners. The infinite [PO3]? chains in the structures of 1 and 2 are parallel to [100] and [–101], respectively. The uranyl polyphosphate frameworks are occupied by host K+ cations.  相似文献   

9.
Two uranyl sulfate hydrates, (H3O)2[(UO2)2(SO4)3(H2O)] · 7H2O (NDUS) and (H3O)2[(UO2)2(SO4)3(H2O)] · 4H2O (NDUS1), and one uranyl selenate‐selenite [C5H6N][(UO2)(SeO4)(HSeO3)] (NDUSe), were obtained and their crystal structures solved. NDUS and NDUSe result from reactions in highly acidic media in the presence of L ‐cystine at 373 K. NDUS crystallized in a closed vial at 278 K after 5 days and NDUSe in an open beaker at 278 K after 2 weeks. NDUS1 was synthesized from aqueous solution at room temperature over the course of a month. NDUS, NDUS1, and NDUSe crystallize in the monoclinic space group P21/n, a = 15.0249(4) Å,b = 9.9320(2) Å, c = 15.6518(4) Å, β = 112.778(1)°, V = 2153.52(9) Å3,Z = 4, the tetragonal space group P43212, a = 10.6111(2) Å,c = 31.644(1) Å, V = 3563.0(2) Å3, Z = 8, and in the monoclinic space group P21/n, a = 8.993(3) Å, b = 13.399(5) Å, c = 10.640(4) Å,β = 108.230(4)°, V = 1217.7(8) Å3, Z = 4, respectively.The structural units of NDUS and NDUS1 are two‐dimensional uranyl sulfate sheets with a U/S ratio of 2/3. The structural unit of NDUSe is a two‐dimensional uranyl selenate‐selenite sheets with a U/Se ratio of 1/2. In‐situ reaction of the L ‐cystine ligands gives two distinct products for the different acids used here. Where sulfuric acid is used, only H3O+ cations are located in the interlayer space, where they balance the charge of the sheets, whereas where selenic acid is used, interlayer C5H6N+ cations result from the cyclization of the carboxyl groups of L ‐cystine, balancing the charge of the sheets.  相似文献   

10.
An X-ray diffraction study of the single crystals of (C2H7N4O)2[(UO2)2(OH)2(C2O4)(CHO2)2] was carried out. The compound crystallizes in the triclinic system, space group $P\bar 1$ , Z = 2, a = 5.5621(8) Å, b = 8.1489(10) Å, c = 11.8757(16) Å, α = 88.866(7)°, β = 82.204(6)°, γ = 87.378(6)°, V = 532.7(1) Å3, ρcalcd = 2.988 g/cm3. The main structural units in the crystal are the [(UO2)2(OH)2(C2O4)(CHO2)2)]2? chains corresponding to the crystal chemical group A2M 2 2 K02M 2 1 (A = UO 2 2+ , M2 = OH?, K02 = C2O 4 2? , M1 = CHO 2 ? ) of uranyl complexes. The chains are united into a three-dimensional framework through the electrostatic interaction and hydrogen bonds involving uranyl, oxalate, and hydroxyl groups, formate ions, and 1-carbamoylguanidinium cations.  相似文献   

11.
Single crystals of γ‐K(UO2)(NO3)3 were prepared from aqueous solutions by evaporation. The crystal structure [orthorhombic, Pbca (61), a = 9.2559(3) Å, b = 12.1753(3) Å, c = 15.8076(5) Å, V = 1781.41(9) Å3, Z = 8] was determined by direct methods and refined to R1 = 0.0267 on the basis of 3657 unique observed reflections. The structure is composed of isolated anionic uranyl trinitrate units, [(UO2)(NO3)3], that are linked through eleven‐coordinated K+ cations. Both known polymorphs of K(UO2)(NO3)3 (α‐ and γ‐phases) can be considered as based upon sheets of isolated complex [(UO2)(NO3)3] ions separated by K+ cations. The existence of polymorphism in the two K[UO2(NO3)3] polymorphs is due to the different packing modes of uranyl trinitrate clusters that adopt the same two‐dimensional but different three‐dimensional arrangements.  相似文献   

12.
By slow evaporation of solutions containing UO2(ClO4)2 and an excess of HClO4, single crystals of [UO2(ClO4)2(H2O)3] ( 1 ) and [UO2(H2O)5](ClO4)2 ( 2 ) were obtained and their structures were determined. From similar solutions prepared from stoichiometric amounts of UO3 and perchloric acid, crystals of [UO2(H2O)5](ClO4)2·2H2O ( 3 ) were obtained. The trihydrate (monoclinic, P21/c, a = 545.44(1) pm, b = 1811.09(5) pm, c = 1032.46(2) pm, β = 90.016(1)°) consists of uranyl ions, which are coordinated by two monodentate perchlorate ions and three water molecules. The pentahydrate (monoclinic, P21/n, a = 529.35(2) pm, b = 1645.43(6) pm, c = 1480.18(6) pm, β = 99.847(1)°) contains uranyl ions coordinated by five water molecules. The same structural unit can be found in the heptahydrate, whose structure was re‐determined (orthorhombic, Pbcn, a = 920.9(3) pm, b = 1067.9(3) pm, c = 1445.7(3) pm). In this structure, two molecules of water of crystallization are present.  相似文献   

13.
>From Small Fragments to New Poly‐alkoxo‐oxo‐metalate Derivatives: Syntheses and Crystal Structures of K4[VIV12O12(OCH3)16(C4O4)6], Cs10[VIV24O24(OCH3)32(C4O4)12][VIV8O8(OCH3)16(C2O4)], and M2[VIV8O8(OCH3)16(VIVOF4)] (M = [N(nBu)4] or [NEt4]) By solvothermal reaction of ortho‐vanadicacid ester [VO(OMe)3] with squaric acid and potassium or caesium hydroxide the compounds K4[VIV12O12(OCH3)16(C4O4)6] ( 2 ) and Cs10[VIV24O24(OCH3)32(C4O4)12][VIV8O8(OCH3)16(C2O4)] ( 3 ) could be syntesized. With tetra‐n‐butyl‐ or tetra‐n‐ethylammonium fluoride [N(nBu)4]2[VIV8O8(OCH3)16(VIVOF4)] ( 4 ) and [N(Et)4]2[VIV8O8(OCH3)16(VIVOF4)] ( 5 ) could be isolated. In 2 and 3 the corners of a tetrahedron or cube resp. are occupied by {(VO)3(OMe)4} groups and connected along the edges of the tetrahedron resp. cube by six or twelve resp. squarato‐groups. The octanuclear anions in the compounds 3 , 4 , and 5 are assumedly built up by fragments of the ortho‐vanadicacid ester [VO(OMe)3]. Around the anions C2O42— or VOF4 these oligormeric chains are closed to a ring . Crystal data: 2 , tetragonal, P43, a = 18.166(3)Å, c = 29.165(7)Å, V = 9625(3)Å3, Z = 4, dc = 1.469 gcm—3; 3 , orthorhombic, Pbca, a = 29.493(5)Å, b = 25.564(4)Å, c = 31.076Å, V = 23430(6)Å3, Z = 4, dc = 1.892 gcm—3; 4 , monoclinic, P21/n, a = 9.528(1)Å, b = 23.021(2)Å, c = 19.303(2)Å, β = 92.570(2)°, V = 4229.8(5)Å3, Z = 2, dc = 1.391 gcm—3; 5 , monoclinic, P21/n, a = 16.451(2)Å, b = 8.806(1)Å, c = 23.812(1)Å, β = 102.423(2)°, V = 3368.7(6)Å3, Z = 2, dc = 1.534 gcm—3.  相似文献   

14.
(CN3H6)2[UO2CrO4(C5H3N(COO)2)] crystals (where CN3H6 is the guanidinium cation and C5H3N(COO)2 is the pyridine-2,6-dicarboxylate anion) have been synthesized and studied by X-ray diffraction and IR spectroscopy. The compound crystallizes in triclinic system with the unit cell parameters a = 7.4115(3) Å, b = 10.0365(7) Å, c = 12.1822(10) Å, α = 93.992(6)°, β = 97.749(7)°, γ = 96.907(6)°; space group $P\bar 1$ , Z = 2, R = 0.0721. The structure consists of [UO2CrO4(C5H3N(COO)2)] 2 4? , centrosymmetric dimers linked with the outer-sphere guanidinium ions by means of electrostatic interactions and hydrogen bonds. [UO2CrO4(C5H3N(COO)2)] 2 4? dimers belong to the AT001B2 crystallochemical group (A = UO 2 2+ , T001 = C5H3N(COO) 2 2? B2 = CrO 4 2? ) of uranyl complexes. Using molecular Voronoi-Dirichlet polyhedra, we have established that, in addition to hydrogen bonds, the π-π stacking interaction also produces some effect on the packing of uranyl-containing complexes in the studied structure.  相似文献   

15.
The compounds Eu(OH)(CrO4) and Y(OH)(CrO4) were obtained under hydrothermal conditions and characterized by single‐crystal X‐ray diffraction analysis. They are isostructural and crystallize in the monoclinic system, space group P21/n (no. 14) with lattice parameters a = 8.278(1) Å, b = 11.400(2) Å, c = 8.393(1) Å, β = 93.76(2)°, V = 790.3(2) Å3, Z = 4, d = 4.79 g · cm–3 for Eu(OH)(CrO4) and a = 8.151(1) Å, b = 11.362(2) Å, c = 8.285(1) Å, β = 94.23(1)°, V = 765.2(2) Å3, Z = 4, d = 3.85 g · cm–3 for Y(OH)(CrO4). The [EuO8] polyhedra form infinite double chains along the a direction, which are connected by common edges and corners. These double chains are related together in the two other directions by the [CrO4]2– tetrahedra to form a three‐dimensional network in which channels appear parallel to the [100] direction. We examine the structural evolution, as a function of the Ln3+ ionic radius, in the series Ln(OH)(CrO4) compounds (with Ln = Nd, Eu, Gd, Tb, Er, Yb) and Y(OH)(CrO4). To determine the best coordination number of each lanthanide and yttrium ions, different calculations of bond valence sum were realized.  相似文献   

16.
A polymeric VIV‐Cd compound, {(NH4)2[(VIVO)22‐O)(nta)2Cd(H2O)2]·H2O}n (H3nta = nitrilotriacetic acid), has been prepared and characterized by single‐crystal X‐ray diffraction. The compound crystallizes in the monoclinic space group C2/c with a = 17.3760(2) Å, b = 8.0488(1) Å, c = 17.3380(2) Å, β = 107.9690(10)°, V = 2306.55(5) Å3, Z = 4, and R1 = 0.0303 for 1958 observed reflections. The structure exhibits a heterometallic three‐dimensional network formed by polymeric [(VIVO)22‐O)(nta)2Cd(H2O)2]2? anions.  相似文献   

17.
The single crystals of (C2H7N4O)2[UO2(C2O4)2(H2O)] were studied by X-ray diffraction. The crystals are monoclinic, space group Pn, Z = 2, unit cell parameters: a = 9.4123(2) Å, b = 8.4591(2) Å, c = 11.8740(3) Å, β = 105.500(10)°, V = 911.02(4) Å3. The main structural units of the crystals of I are islet complex groups [UO2(C2O4)2(H2O)]2? corresponding to the crystal chemical group AB 2 01 M1 (A = UO UO 2 2+ , B01 = C2O 4 2? , M = H2O) of uranyl complexes. Uranium-containing mononuclear complexes are connected into a three-dimensional framework through the electrostatic interactions and hydrogen bonding system involving carbamyolguanidinium ions.  相似文献   

18.
p-tert-Butyloctahomotetraoxacalix[8]arene (LH8) reacts with uranyl nitrate hexahydrate in the presence of rubidium hydroxide to give a mixed complex that can be viewed as a tetrauranate dimer [(UO2)4(LH4)2(OH)4] containing four disordered rubidium ions and water molecules. Two uranyl ions are complexed in an “external” fashion by each macrocycle, each of them bound to two phenoxide groups and one ether group, as well as to two bridging hydroxide ions. The latter ensure the formation of a dimeric capsule that contains the disordered set of alkali metal ions. Apart from water molecules, the Rb+ ions are bound to the uranyl oxo groups directed towards the inner cavity, and to phenol and ether oxygen atoms from the macrocycle. The resulting octanuclear complex presents an unprecedented geometry evidencing the assembling potential of uranyl ions.

p-tert-Butyloctahomotetraoxacalix[8]arene (LH8) reacts with uranyl nitrate hexahydrate in the presence of rubidium hydroxide to give a mixed complex that can be viewed as a tetrauranate dimer [(UO2)4(LH4)2(OH)4] containing four disordered rubidium ions and water molecules. Two uranyl ions are complexed in an “external” fashion by each macrocycle, each of them bound to two phenoxide groups and one ether group, as well as to two bridging hydroxide ions. The latter ensure the formation of a dimeric capsule that contains the disordered set of alkali metal ions. Apart from water molecules, the Rb+| ions are bound to the uranyl oxo groups directed towards the inner cavity, and to phenol and ether oxygen atoms from the macrocycle. The resulting octanuclear complex presents an unprecedented geometry evidencing the assembling potential of uranyl ions.  相似文献   

19.
Preparation, Crystal Structure, and Magnetism of [(CH3)2NH2][PrCl4(H2O)2] The complex water containing chloride [(CH3)2NH2][PrCl4(H2O)2] has been prepared for the first time and the crystal structure has been determined from single crystal X‐ray diffraction data. The compound crystallizes orthorhombically in the space group Cmca (Z = 8) with a = 1796.6(2) pm, b = 940.7(1) pm, and c = 1238.4(2) pm. The anionic part of the structure is built up by chains of edge‐connected trigondodecahedra [PrCl6(H2O)2]3– according to [PrCl4/2Cl2(H2O)2], which are held together by dimethylammonium cations ([(CH3)2NH2]+). In order to study the interactions between the praseodymium cation (Pr3+) and the ligands magnetic measurements were carried out. The magnetic data were interpreted by ligand field calculations applying the angular overlap model.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号