首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 923 毫秒
1.
Two new borosulfates were obtained either by an open vessel synthesis from sulfuric acid and B(OH)3, yielding (NH4)3[B(SO4)3] or from solvothermal synthesis in oleum enriched sulfuric acid and B(OH)3, yielding Sr[B2(SO4)4]. (NH4)3[B(SO4)3] crystallizes homeotypic to K3[B(SO4)3] in space group Ibca (Z = 8, a = 728.58(3) pm, b = 1470.84(7) pm, c = 2270.52(11) pm), comprising open branched vierer single chains {1[B(SO4)2(SO4)2/2]3–}. Sr[B2(SO4)4] crystallizes as an ordered variant of Pb[B2(SO4)4] in space group Pnna (Z = 4, a = 1257.4(4) pm, b = 1242.1(4) pm, c = 731.9(2) pm), consisting of loop branched vierer single chains {1[B(SO4)4/2]2–}. Vibrational spectroscopy confirms both refined structure models. Thermal analysis of the dried powders, showed a decomposition towards the binary and ternary components, whereas a thermal treatment in the presence of the mother liquor promotes a decomposition of Sr[B2(SO4)4] towards Sr[B2O(SO4)3].  相似文献   

2.
Polysulfonyl Amines. XXXVII. Preparation of Mercury Dimesylamides. Crystal and Molecular Structures of Hg[N(SO2CH3)2]2, Hg[{N(SO2CH3)2}2(DMSO)2], and Hg[{N(SO2CH3)2}2(HMPA)] Hg[N(SO2CH3)2]2 ( 1 ) and Hg2[N(SO2CH3)2]2 ( 2 a ) are formed as colourless, sparingly soluble precipitates when solutions of Hg(NO3)2 or Hg2(NO3)2 in dilute nitric acid are added to an aqueous HN(SO2CH3)2 solution. By a similar reaction, Hg2[N(SO2C6H4 ? Cl? 4)2]2 is obtained. 1 forms isolable complexes of composition Hg[N(SO2CH3)2]2 · 2 L with L = dimethyl sulfoxide (complex 3 a ), acetonitrile, dimethyl formamide, pyridine or 1,10-phenanthroline and a (1/1) complex Hg[N(SO2CH3)2]2 · HMPA ( 4 ) with hexamethyl phosphoramide. Attempted complexation of 2 a with some of these ligands induced formation of Hg0 and the corresponding HgII complexes. Crystallographic data (at -95°C) are for 1: space group 141/a, a = 990.7(2), c = 2897.7(8) pm, V = 2.844 nm3, Z = 8, Dx = 2.545Mgm?3; for 4a: space group P1 , a = 767.8(2), b = 859.2(2), c = 925.2(2)pm α = 68.44(2), β = 86.68(2), γ = 76.24(2)°, V = 0.551nm3, Z = 1, Dx = 2.113 Mgm?3; for 4: space group P21/c, a = 1041.3(3), b = 1545.4(3), c = 1542.5(3) pm, β = 100.30(2)°, V = 2.474nm3, Z = 4, Dx = 1.944Mgm3. The three compounds form molecular crystals. The molecular structures contain a linear or approximately linear, covalent NHgN moiety; the Hg? N distances and N? Hg? N angles are 206.7(4) pm and 176.3(2)° for 1, 207.2(2) pm and 180.0° for 3a, 205.7(4)/206.7(4) pm and 170.5(1)° for 4. In the complexes 3a and 4, the 0-ligands are bonded to the Hg atoms perpendicularly to the N? Hg? N axes, leading in 3a to a square-planar trans-(N2O2) coordination with Hg? 0 261.2(2) pm and N? Hg? O 92.3(1)/87.7(1)°, in 4 to a slightly distorted T-shaped (N2O) geometry with Hg? 0 246.2(4)pm and N? Hg? 0 96.7(1)/92.0(1)°. In all three structures, the primary coordination is extended to a severely distorted (N2O4) hexacoordination by the appropriate number of secondary, inter- and/or intramolecular Hg…?0 inter-actions (0 atoms from sulfonyl groups, Hg…?O distances in the range 280—300pm). The intramolecular Hg…?O interactions give rise to nearly planar four-membered [HgNSO] rings. The molecule of 1 has a two-fold axis through the bisector of the N? Hg? N angle, the molecule of 3a an inversion center at the Hg atom. The molecule of 4 has no symmetry.  相似文献   

3.
Preparation of Tetramethylammonium Azidosulfite and Tetramethylammonium Cyanate Sulfur Dioxide‐Adduct, [(CH3)4N]+[SO2N3], [(CH3)4N]+[SO2OCN] and Crystal Structure of [(CH3)4N]+[SO2N3] Tetramethylammonium azide forms with sulfur dioxide an azidosulfite salt. It is characterized by NMR and vibrational spectroscopy and the crystal structure analysis. [(CH3)4N]+[SO2N3] crystallizes in the monoclinic space group P21/c with a = 551.3(1) pm, b = 1095.2(1) pm, c = 1465.0(1) pm, β = 100.63(1)°, and four formula units in the unit cell. The crystal structure possesses a strong S–N interaction between the N3– anions and the SO2 molecules. The S–N distance of 200.5(2) pm is longer than a covalent single S–N bond. The structure is compared with ab initio calculated data. Furthermore an adduct of tetrametylammonium cyanate and sulfur dioxide is reported. It is characterised by NMR and vibrational spectroscopy. The structure is calculated by ab initio methods.  相似文献   

4.
Synthesis and Structure Investigations of Iodocuprates(I). XV Iodocuprate(I) with Solvated Cations: [Li(CH3CN)4] [Cu2I3] and [Mg{(CH3)2CO}6][Cu2I4] [Li(CH3CN)4][Cu2I3] 1 and [Mg((CH3)2CO)6][Cu2I4] 2 were prepared by reactions of CuI with LiI in acetonitrile and of CuI with MgI2 in acetone. 1 crystallizes orthorhombic, Pnma, a = 552.7(2), b = 1258.8(8), c = 2516(1) pm, z = 4. [Li(CH3CN)4]+ cations are located between rod packings of CuI4 tetrahedra double chains [(CuI2/2I2/4)2]? parallel to the axis. Short intermolecular anion/cation contacts were observed. The crystal structure of 2 (monoclinic, P21/n, a = 1840(2), b = 1059.2(2), c = 1879(2)pm, β = 112.94(4)°, z = 4) is built up by [Mg((CH3)2CO)6]2+ cations forming a simple hexagonal sphere packing. The binuclear anions [Cu2I4]2? occupy holes in the trigonal prismatic channels formed by the cations.  相似文献   

5.
Synthesis and Crystal Structure of CsAu(SO4)2 Light yellow single crystals of CsAu(SO4)2 were obtained upon evaporation of a solution of Au(OH)3 and Cs2SO4 in sulfuric acid (96 % H2SO4). In the crystal structure (monoclinic, P21/c, Z = 4, a = 1029.7(2), b = 893.4(2), c = 901.0(1) pm, β = 111.08(1)°) Au3+ is in square planar coordination of oxygen atoms which belong to four SO4 ions. According to [Au(SO4)4/2] puckered layers are formed which are connected by the Cs+ ions. The latter are surrounded by five chelating and three monodentate sulfate groups leading to a CN of 13.  相似文献   

6.
The reactions of elemental nickel and tellurium and of ZnTe with excess AsF5 in liquid SO2 yield [M(SO2)6](Te6)[AsF6]6 (M = Ni, Zn) as orange crystals. The crystal structure determinations (triclinic, , M = Ni: a = 1632.59(2), b = 1795.06(1), c = 1822.97(2) pm, α = 119.11(4), β = 90.78(4), γ = 106.28(4)°, V = 4408.24(8)·106pm3, Z = 4) show the two compounds to be isotypic. The structures are made up of discrete [M(SO2)6]2+ complexes, Te64+ clusters and octahedral [AsF6]? ions. In the [M(SO2)6]2+ complexes the metal ions are surrounded octahedrally by six SO2 molecules bound via the O atoms. The Te64+ polycations are of trigonal prismatic shape with short Te–Te bonds within the triangular faces (270 pm) and long Te–Te bonds along the edges parallel to the pseudo C3 axes of the prisms (312 pm). The arrangement of the ions is related to the Li3Bi structure type. [M(SO2)6]2+ complexes and Te64+ polycations together form a distorted cubic closest packing with all tetrahedral and octahedral interstices filled by [AsF6]? ions. The analogous reaction starting from CdTe did not yield a compound containing simultaneously [Cd(SO2)n]2+ complexes and tellurium polycations but instead Te6[AsF6]4 · 2 SO2 besides [Cd(SO2)2][AsF6]2 were obtained. It crystallizes isotypically to [Mn(SO2)2][AsF6]2 (Mews, Zemva, 2001) (orthorhombic, Fdd2, a = 1534.96(3), b = 1812.89(3), c = 892.28(3) pm, V = 2483·106 pm3, Z = 4).  相似文献   

7.
Solvent-free Synthesis of Tetramethylammonium Salts: Synthesis and Characterization of [N(CH3)4]2[C2O4], [N(CH3)4][CO3CH3], [N(CH3)4][NO2], [N(CH3)4][CO2H], and [N(CH3)4][O2C(CH2)2CO2CH3] A general procedure to synthesize tetramethylammonium salts is presented. Several tetramethylammonium salts were prepared in a crystalline state by solvent-free reaction of trimethylamine and different methyl compounds at mild conditions: [N(CH3)4]2[C2O4] (cubic; a = 1 114.8(3) pm), [N(CH3)4][CO3CH3] (P21/n; a = 813.64(3), b = 953.36(3), c = 1 131.3(4) pm, β = 90.03(1)°), [N(CH3)4][NO2] (Pmmn; a = 821.2(4), b = 746.5(3), c = 551.5(2) pm), [N(CH3)4][CO2H] (Pmmn; a = 792.8(7), b = 791.7(3), c = 563.3(4) pm) and [N(CH3)4][O2C(CH2)2CO2CH3] (P21; a = 731.1(2), b = 826.4(3), c = 1 025.2(3) pm, β = 110.1(1)°). The tetramethylammonium salts were characterized by IR-spectroscopy and X-ray diffraction. The crystal structures of the methylcarbonate and the nitrite are described.  相似文献   

8.
Reactions of freshly precipitated binuclear zinc dimethyldithiocarbamate with [AuCl4]? anions in 2 M HCl were studied. The heteropolynuclear complex [Au2{S2CN(CH3)2}4][ZnCl4] (I) and the polymeric heterovalent complex ([Au{S2CN(CH3)2}2][AuCl2]) n (II) were preparatively isolated from the chemisorption system [Zn2{S2CN(CH3)2}4]-Au3+/2 M HCl. The products were characterized by 13C MAS NMR data and by X-ray diffraction determination of crystal and molecular structures. The principal structural units of compounds I and II are the tetragonal planar complex cations [Au{S2CN(CH3)2}2]+ (in which the complex-forming ion coordinates two MDtc ligands in the S,S′-bidentate mode) and the anions, namely, the distorted tetrahedral anion [ZnCl4]2? in I and the linear [AuCl2]? anion in II. The further structural self-organization of complexes at the supramoleular level occurs through relatively weak secondary bonds Au?S and Au?Cl. The chemisorption capacities of zinc dimethyldithiocarbamate calculated from gold(III)-binding reactions are 644.1 and 1288.2 mg of gold per gram of the sorbent. Simultaneous thermal analysis studies of the thermal behavior of I and II were used to elucidate the conditions of gold recovery.  相似文献   

9.
Crystal Structures of [Ph3PMe]Cl·CH2Cl2, [Ph4P]NO3·CH2Cl2, and [Ph4P]2[SiF6]·CH2Cl2 The crystal structures of the title compounds are determined by X‐ray diffraction. In all cases, the included dichloromethane molecules as well as the phosphonium cations are involved to form hydrogen bridges with the anions. [Ph3PMe]Cl·CH2Cl2 ( 1 ): Space group , Z = 2, lattice dimensions at 100 K: a = 890.3(1), b = 988.0(1), c = 1162.5(1) pm, α = 106.57(1)°, β = 91.79(1)°, γ = 92.60(1)°, R1 = 0.0253. [Ph4P]NO3·CH2Cl2 ( 2 ): Space group P21/n, Z = 4, lattice dimensions at 193 K: a = 1057.0(1), b = 1666.0(1), c = 1358.9(1) pm, β = 100.10(1)°, R1 = 0.0359. [Ph4P]2[SiF6]·CH2Cl2 ( 3 ): Space group , Z = 2, lattice dimensions at 193 K: a = 1063.9(1), b = 1233.1(1), c = 1782.5(2) pm, α = 76.88(1)°, β = 83.46(1)°, γ = 72.29(1)°, R1 = 0.0332.  相似文献   

10.
The reaction of Ph3SnCl, (R4N)2[Mo6O19] and (R4N)OH in a molar ratio of 6:1:10 leads to the formation of (R4N)[(Ph3Sn)MoO4] (R = nPr ( 1 ), nBu ( 2 )). Compounds 1· CH3CN and 2 have been charactarized by IR spectroscopy and single crystal X‐ray diffraction. 1· CH3CN forms orthorhombic crystals, space group P212121 with a = 1339.9(2), b = 1508.9(2), c = 1733.2(3) pm. 2 crystallizes in the monoclinic space group P21 with a = 1342.6(2), b = 2280.3(4), c = 1344.0(2) pm, β = 118.34(1). Both compounds 1 and 2 consist of isolated R4N+ cations and polymeric $\rm^{1}_{\infty}$ [(Ph3Sn)MoO4] chains with an alternating arrangement of Ph3Sn+ and MoO42– groups. Treatment of (Ph3Sn)2MoO4 with bis(ethylenediamine)copper(II) succinate yields [Cu(en)2(Ph3Sn)2(MoO4)2] ( 3 ). The zinc derivative [Zn(en)2(Ph3Sn)2(MoO4)2] ( 4 ) is obtained similarly by reaction of (Ph3Sn)2MoO4 with bis(ethylenediamine)zinc(II) formiate. Compounds 3· 2DMF · EtOH and 4· 2DMF · EtOH crystallize in the monoclinic space group P21/n with a = 1998.0(2), b = 1313.3(1), c = 2181.6(2) pm, β = 90.97(1)° for 3 and a = 2015.4(1), b = 1316.7(1), c = 2157.0(1) pm, β = 90.40(1)° for 4 . Like in the cases of 1 and 2, polymeric $\rm^{1}_{\infty}$ [(Ph3Sn)MoO4] chains are observed. The [M(en)2]2+ units (M = Cu, Zn) act as linkers between the $\rm^{1}_{\infty}$ [(Ph3Sn)MoO4] chains to give 2D layer structures with (6, 3) net topology.  相似文献   

11.
12.
Iodostannates with Polymeric Anions: (Me3PhN)4 [Sn3I10], [Me2HN–(CH2)2–NMe2H]2 [Sn3I10], and [Me2HN–(CH2)2–NMe2H] [Sn3I8] The polymeric iodostannate anions in (Me3PhN)4 [Sn3I10] ( 1 ) and [Me2HN–(CH2)2–NMe2H]2 [Sn3I10] ( 2 ) consist of Sn3I12‐trioctahedra, which share four common iodine atoms with adjacent units to form infinite layers in 1 and polymeric chains in 2 . In the anion of [Me2HN–(CH2)2–NMe2H] [Sn3I8] ( 3 ) distorted SnI6 octahedra sharing common edges and vertices form a two‐dimensional network. (Me3PhN)4 [Sn3I10] ( 1 ): Space group C2/c (No. 15), a = 2406.9(2), b = 968.26(7), c = 2651.7(2) pm, β = 111.775(9), V = 5738.9(8) · 106 pm3; [Me2HN–(CH2)2–NMe2H]2 [Sn3I10] ( 2 ): Space group P21/n (No. 14), a = 1187.2(1), b = 1554.4(1), c = 1188.9(1) pm, β = 116.620(8), V = 1961.4(3) · 106 pm3; [Me2HN–(CH2)2–NMe2H] [Sn3I8] ( 3 ): Space group P21/c (No. 14), a = 1098.9(2), b = 803.93(7), c = 1571.5(2) pm, β = 102.96(1), V = 1352.9(2) · 106 pm3.  相似文献   

13.
The reaction of ReCl5 and fuming sulfuric acid (25 % SO3) in a sealed glass tube at 200 °C led to red, needle shaped single crystals of Re2O4Cl4(SO4) (monoclinic, C2/c, a = 1501.8(2) pm, b = 1545.9(2) pm, c = 945.18(8) pm, β = 98.761(9)°, Z = 8). In the crystal structure the [ReO2] moieties are linked by [SO4]2– tetrahedra to chains along the [101] direction. Each sulfate ion connects four rhenium atoms, additional two chloride ions complete the octahedral coordination sphere of each rhenium atom according to $\rm^1_\infty$ [ReO2/1Cl2/1(SO4)2/4].  相似文献   

14.
The reactions of KCl, [NH4]2[SO4], Rb2[CO3], and Cs2[CO3] with fuming sulfuric acid (65 % SO3) yielded colorless and moisture sensitive crystals of K[HS2O7] (monoclinic, P21/c (no. 14), Z = 4, a = 716.67(3) pm, b = 1043.57(4) pm, c = 828.78(3) pm, β = 107.884(1)°, V = 589.89(4) × 106 pm3), [NH4][HS2O7] (monoclinic, P21/c (no. 14), Z = 4, a = 729.29(1) pm, b = 1079.73(1) pm, c = 843.26(1) pm, β = 106.397(1)°, V = 637.01(1) × 106 pm3), Rb[HS2O7] (monoclinic, P21/c (no. 14), Z = 4, a = 724.49(2) pm, b = 1073.19(3) pm, c = 852.01(3) pm, β = 106.534(1)°, V = 635.06(3) × 106 pm3), and Cs[HS2O7] (triclinic, P$\bar{1}$ (no. 2), Z = 2, a = 537.61(3) pm, b = 784.71(4) pm, c = 867.93(4) pm, α = 94.214(2)°, β = 103.138(2)°, γ = 105.814(2)°, V = 339.47(3) × 106 pm3). Colorless crystals of [NO][HS2O7] (monoclinic, P21/c (no. 14), Z = 4, a = 739.90(4) pm, b = 1048.00(5) pm, c = 830.97(4) pm, β = 106.985(2)°, V = 106.985(2) × 106 pm3) were obtained as a side product from the reaction of [NH4]2[Rh(NO2)4] with oleum (65 % SO3) in the ionic liquid [BMIm][OTf]. The crystal structures of K[HS2O7], [NH4][HS2O7], [NO][HS2O7], and Rb[HS2O7] show the [HS2O7] ions linked into dimers by strong hydrogen bonds. Contrastingly, in the crystal structure of Cs[HS2O7] the [HS2O7] ions are connected to infinite chains. Raman spectra were recorded for M[HS2O7] (M = K, Rb, Cs).  相似文献   

15.
The Syntheses and Vibrational Spectra of the Homoleptic Metal Acetonitrile Cations [Au(NCCH3)2]+, [Pd(NCCH3)4]2+, [Pt(NCCH3)4]2+, and the Adduct CH3CN · SbF5. The Crystal and Molecular Structures of [M(NCCH3)4][SbF6]2 · CH3CN, M = Pd or Pt Solvolyses of the homoleptic metal carbonyl salts [M(CO)4][Sb2F11]2, M = Pd or Pt, in acetonitrile leads at 50 °C both to complete ligand exchange for the cations as well as to a conversion of the di-octahedral anion [Sb2F11] into [SbF6] and the molecular adduct CH3CN · SbF5 according to: [M(CO)4][Sb2F11]2 + 7 CH3CN → [M(NCCH3)4][SbF6]2 · CH3CN + 2 CH3CN · SbF5 + 4 CO M = Pd, Pt The monosolvated [M(NCCH3)4][SbF6]2 · CH3CN are obtained as single crystals from solution and are structurally characterized by single crystal x-ray diffraction. Both salts are isostructural. The cations are square planar but the N–C–C-sceletial groups of the ligands depart slightly from linearity. The new acetonitrile complexes as well as [Au(NCCH3)2][SbF6] and the adduct CH3CN · SbF5 are completely characterized by vibrational spectroscopy.  相似文献   

16.
Phosphorane Iminato Complexes of Sulfur. Syntheses and Crystal Structures of [O3SS(NPPh3)2] · CH3CN, [SO(NPPh3)2], and [SCl(NPMe3)2]Cl The title compounds have been prepared by the reaction of Me3SiNPPh3 with SO2 and SOCl2, respectively, and by the reaction of Me3SiNPMe3 with S2Cl2. They form colourless, moisture sensitive crystals, which were characterized by IR spectroscopy and by crystal structure determinations. [O3SS((NPPh3)2)] · CH3CN : Space group Pca21, Z = 4, structure solution with 4016 observed unique reflections, R = 0.050. Lattice dimensions at ?60°C: a = 1865.1, b = 1168.4, c = 1569.0 pm. The compound has a zwitterionic structure with a S? S bond length of 218.2 pm and bond lengths S? N of 161.2 and P? N of 160.1 pm. [SO(NPPh3)2] : Space group P21/c, Z = 4, structure solution with 2854 observed unique reflections, R = 0.113. Lattice dimensions at ?50°C: a = 1173.1, b = 1585.6, c = 1619.2 pm, b? = 98.13°. The compound forms monomeric molecules, in which the positions of S and N atoms are disordered in two positions. The bond lengths are S? N 166 pm and P? N 163 pm in average. [SCl(NPMe3)2]Cl : Space group P1 , Z = 2, structure solution with 2416 observed unique reflections, R = 0.038. Lattice dimensions at 20°C: a = 613.2, b = 1030.3, c = 1111.4 pm, α = 88.48°, b? = 88.01°, γ = 83.10°. The compound forms ions [SCl(NPMe3)2]+ and Cl?. In the cation the sulfur atom is ?-tetrahedrally coordinated with a long S? Cl distance of 246.9 pm and bond lengths S? N of 155.3 pm and P? N of 164.3 pm in average.  相似文献   

17.
Combination of Ion Exchange and Freeze Drying as a Synthetic Route to New Oxoferrates(VI) M2FeO4 with M = Li, Na, N(CH3)4, N(CH3)3Bzl, N(CH3)3Ph For the first time Oxoferrates(VI) M2FeO4 with M = Li, Na, N(CH3)4, N(CH3)3Bzl and N(CH3)3Ph have been prepared by cation exchange reaction on K2FeO4 and freeze drying of the resulting aqueous solutions. Li2FeO4 crystallizes as a monohydrate and decomposes at –10 ± 3 °C. Na2FeO4 crystallizes orthorhombically (Cmcm, a = 5.675(3) Å, b = 9.349(4) Å, c = 7.160(2) Å) and is isostructural to Na2CrO4. [N(CH3)4]2FeO4 crystallizes tetragonally (P4/nbm, a = 11.010(3) Å, c = 10.902(4) Å) and is isostructural to the room temperature modification of [N(CH3)4]2SO4. Infrared spectra of the alkylammonium ferrates(VI) show a decreasing influence of lattice forces on the vibrations of the FeO42– ions with increasing cation size. Magnetic measurements show the expected paramagnetism for a d2 ion.  相似文献   

18.
Polysulfonylamines. LXXXIV. Isotypic Structures in the Dimesylamide Complex Series [M(H2O)4{(CH3SO2)2N}2] (M?Mg, Ca, Ni, Cu, Zn, Cd) and [M(py)4{(CH3SO2)2N}2] (M?Ni, Cu, Zn, Cd) The crystal structures of the trans-octahedral complexes [M(H2O)4{(CH3SO2)2N}2] (M?Ca, Cd), in which the dimesylamide anion acts as a monodentate O-ligand and a tetrafunctional hydrogen bond acceptor, were determined by low-temperature X-ray diffraction. Both belong to an isotypic series (triclinic, space group P1 , Z = 1) that had previously been characterized for M?Mg, Ni, Cu and Zn (Z. Anorg. Allg. Chem. 1996 , 622, 1065). In this structure there exists an extended network of strong hydrogen bonds which is probably the underlying reason why the structure type surprisingly persists across the whole series. To support this explanation by indirect evidence from comparison with suitable structures devoid of strong hydrogen bonding, the analogous trans-octahedral complexes [M(py)4{(CH3SO2)2N}2] (M?Mn, Co, Ni, Cu, Zn, Cd) were prepared by treating M[(CH3SO2)2N]2 with pyridine, and the crystal structures of the Ni, Cu, Zn and Cd compounds were studied by low-temperature X-ray crystallography. As anticipated, the four pyridine complexes do not form an isotypic series but instead two isotypic pairs consisting of the Ni and Zn compounds (monoclinic, space group P21/n, Z =2) and of the Cu and Cd complexes (triclinic, space group P1, Z = 1). All molecules of the aqua and the pyridine complexes display crystallographic centrosymmetry. In the hydrates, the mean M? OH2 and the M? O(anion) distances are 232.6 and 232.7 pm for M ? Ca, 225.5 and 230.3 pm für M ? Cd. The mean M? N and the M? O(anion) bond lengths of the pyridine species amount to 211.8 and 213.1 pm for M ? Ni, 217.0 and 218.5 pm for M ? Zn, 232.8 and 234.4 pm for M ? Cd; the corresponding values for the severely Jahn-Teller distorted Cu complex are 203.6 and 254.5 pm. In the crystals of the pyridine complexes, each methyl group is connected through a weak C? H…?O bond to a sulfonyl oxygen atom of an adjacent molecule.  相似文献   

19.
Anhydrous Lanthanum Acetate, La(CH3COO)3, and its Precursor, ·NH4)3[La(CH3COO)6] · 1/2 H2O: Synthesis, Structures, Thermal Behaviour Single crystals of (NH4)3[La(CH3COO)6] · ½ H2O are obtained by refluxing La2O3in (CH3COO)3 · 1.5 H2O with an excess of NH4CH3COO in methanol. The crystal structure (trigonal, R3 , Z = 6, a = 1 365.0(3) pm, c = 2 360(1) pm, R = 0.088, Rw = 0.061 exhibits the coordination number of nine for La3+, which is surrounded by three chelating-type bidentate and three unidentate acetate groups. Characteristic are monomeric units of [La(CH3COO)6]3? which are connected to a three-dimensional network by hydrogen bonds with the NH ions. Thermal decomposition consists of four steps with La(CH3COO)3, La2(CO3)3 and La2O2CO3 as intermediates and La2O3 as the final Product. Single crystals of La(CH3COO)3 are obtained from La2O3 in a melt of NH4CH3COO (molar ratio 1:12) in a sealed glass ampoule. The crystal structure (trigonal, R3 , Z = 18, a = 2 203.0(5) pm; c = 987.1(3) pm, R = 0.027, Rw = 0.023) shows the coordination number of ten for La3+. These are three-dimensionally connected by oxygen atoms of the acetate groups with two tetradentate double-bridging and one Z,Z-type-bridging bidentate acetate group.  相似文献   

20.
The Crystal Structures of (NH4)2[ReCl6], [ReCl2(CH3CN)4]2[ReCl6] · 2CH3CN and [ReCl4(18)(Crown-6)] Brown single crystals of (NH4)2[ReCl6] are formed by the reaction of NH4Cl with ReCl5 in a suspension of diethylether. [ReCl2(CH3CN)4]2[ReCl6] · 2CH3CN crystallizes as brown crystal plates from a solution of ReCl5 in acetonitrile. Lustrous green single crystals of [ReCl4(18-crown-6)] are obtained by the reaction of 18-crown-6 with ReCl5 in a dichloromethane suspension. All rhenium compounds are characterized by IR spectroscopy and by crystal structure determinations. (NH4)2[ReCl6]: Space group Fm3 m, Z = 4, 75 observed unique reflections, R = 0.01. Lattice constant at ?70°C: a = 989.0(1) pm. The compound crystallizes in the (NH4)2[PtCl6] type, the Re? Cl distance is 235.5(1) pm. [ReCl2(CH3CN)4]2[ReCl6] · 2CH3CN: Space group P1, Z = 1, 2459 observed unique reflections, R = 0.12. Lattice dimensions at ?60°C: a = 859.0(1), b = 974.2(7), c = 1287.3(7) pm, α = 102.69(5)°, b? = 105.24(7)°, γ = 102.25(8)°. The structure consists of two symmetry-independent [ReCl2(CH3CN)4]+ ions with trans chlorine atoms, [ReCl6]2? ions, and included acetonitrile molecules. In the cations the Re? Cl bond lengths are 233 pm in average, in the anion they are 235 pm in average. [ReCl4(18-crown-6)]: Space group P21/n, Z = 4, 3 633 observed unique reflections, R = 0.06. Lattice dimensions at ?70°C: a = 1040.2(4), b = 1794.7(5), c = 1090.0(5) pm, b? = 108.91(4)°. The compound forms a molecular structure, in which the rhenium atom is octahedrally coordinated by the four chlorine atoms and by two oxygen atoms of the crown ether molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号