首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mixtures of 4‐carboxypyridinium perchlorate or 4‐carboxypyridinium tetrafluoroborate and 18‐crown‐6 (1,4,7,10,13,16‐hexaoxacyclooctadecane) in ethanol and water solution yielded the title supramolecular salts, C6H6NO2+·ClO4·C12H24O6·2H2O and C6H6NO2+·BF4·C12H24O6·2H2O. Based on their similar crystal symmetries, unit cells and supramolecular assemblies, the salts are essentially isostructural. The asymmetric unit in each structure includes one protonated isonicotinic acid cation and one crown ether molecule, which together give a [(C6H6NO2)(18‐crown‐6)]+ supramolecular cation. N—H...O hydrogen bonds between the protonated N atoms and a single O atom of each crown ether result in the 4‐carboxypyridinium cations `perching' on the 18‐crown‐6 molecules. Further hydrogen‐bonding interactions involving the supramolecular cation and both water molecules form a one‐dimensional zigzag chain that propagates along the crystallographic c direction. O—H...O or O—H...F hydrogen bonds between one of the water molecules and the anions fix the anion positions as pendant upon this chain, without further increasing the dimensionality of the supramolecular network.  相似文献   

2.
In the structure of the complex of dibenzo‐18‐crown‐6 [systematic name: 2,5,8,15,18,21‐hexaoxatricyclo[20.4.0.09,14]hexacosa‐1(26),9,11,13,22,24‐hexaene] with 4‐methoxyanilinium tetrafluoroborate, C7H10NO+·BF4·C20H24O6, the protonated 4‐methoxyanilinium (MB‐NH3+) cation forms a 1:1 supramolecular rotator–stator complex with the dibenzo‐18‐crown‐6 molecule via N—H...O hydrogen bonds. The MB‐NH3+ group is attached from the convex side of the bowl‐shaped crown, in contrast with similar ammonium cations that nest in the curvature of the bowl. The cations are associated via C—H...π interactions, while the cations and anions are linked by weak C—H...F hydrogen bonds, forming cation–crown–anion chains parallel to [011].  相似文献   

3.
In (1,4,7,10,13,16‐hexaoxacyclooctadecane)rubidium hexachloridoantimonate(V), [Rb(C12H24O6)][SbCl6], (1), and its isomorphous caesium {(1,4,7,10,13,16‐hexaoxacyclooctadecane)caesium hexachloridoantimonate(V), [Cs(C12H24O6)][SbCl6]}, (2), and ammonium {ammonium hexachloridoantimonate(V)–1,4,7,10,13,16‐hexaoxacyclooctadecane (1/1), (NH4)[SbCl6]·C12H24O6}, (3), analogues, the hexachloridoantimonate(V) anions and 18‐crown‐6 molecules reside across axes passing through the Sb atoms and the centroids of the 18‐crown‐6 groups, both of which coincide with centres of inversion. The Rb+ [in (1)], Cs+ [in (2)] and NH4+ [in (3)] cations are situated inside the cavity of the 18‐crown‐6 ring; they are situated on axes and are equally disordered about centres of inversion, deviating from the centroid of the 18‐crown‐6 molecule by 0.4808 (13), 0.9344 (7) and 0.515 (8) Å, respectively. Interaction of the ammonium cation and the 18‐crown‐6 group is supported by three equivalent hydrogen bonds [N...O = 2.928 (3) Å and N—H...O = 162°]. The centrosymmetric structure of [Cs(18‐crown‐6)]+, with the large Cs+ cation approaching the centre of the ligand cavity, is unprecedented and accompanied by unusually short Cs—O bonds [2.939 (2) and 3.091 (2) Å]. For all three compounds, the [M(18‐crown‐6)]+ cations and [SbCl6] anions afford linear stacks along the c axis, with the cationic complexes embedded between pairs of inversion‐related anions.  相似文献   

4.
The structures of three salts of 3‐cyano‐4‐dicyanomethylene‐5‐oxo‐4,5‐dihydro‐1H‐pyrrol‐2‐olate with alkali metals (Na, K and Rb) are related to their luminescence properties. The Rb salt, rubidium(I) 3‐cyano‐4‐dicyanomethylene‐5‐oxo‐4,5‐dihydro‐1H‐pyrrol‐2‐olate, Rb+·C8HN4O2, is isomorphous with the previously reported potassium salt. For the Na compound, sodium(I) 3‐cyano‐4‐dicyanomethylene‐5‐oxo‐4,5‐dihydro‐1H‐pyrrol‐2‐olate dihydrate, Na+·C8HN4O2·2H2O, two independent sodium ions, located on inversion centers, are coordinated by four water molecules each and additionally by two cyano groups for one and two carbonyl groups for the other. The luminescence spectra in solution are unaffected by the nature of the cation but vary strongly with the dielectric constant of the solvent. In the solid state, the emission maxima vary with structural features; the redshift of the maximum luminescence varies inversely with the distance between the stacked anions.  相似文献   

5.
In the title hydrated adduct, 1,4,10,13‐tetraoxa‐7,16‐diazo­nia­cyclo­octa­decane bis(4‐amino­benzene­sulfonate) dihydrate, C12H28N2O42+·2C6H6NO3S·2H2O, formed between 7,16‐di­aza‐18‐crown‐6 and the dihydrate of 4‐amino­benzene­sulfonic acid, the macrocyclic cations lie across centres of inversion in the orthorhombic space group Pbca. The anions alone form zigzag chains, and the cations and anions together form sheets that are linked via water mol­ecules and anions to form a three‐dimensional grid.  相似文献   

6.
Several salts of protonated amines and aza‐aromatics with [AuCl4] and [AuBr4] anions contain two‐dimensional (“square”) anionic networks that display short halogen ··· halogen contacts. The Au4 quadrilaterals formed by neighboring anions of the networks are to a good approximation squares, with sides of around 7.5 Å for tetrachloridoaurates and 8 Å for tetrabromidoaurates.  相似文献   

7.
Synthesis and Single Crystal Structure Analysis of [M(NH3)6]C60 · 6 NH3 (M = Co2+, Zn2+) [M(NH3)6]C60 · 6 NH3 (M = Co2+, Zn2+) was synthesized from K2C60 by ion exchange in liquid ammonia. According to single crystal structure analyses the new fullerides are isostructural to the respective Mn, Ni and Cd compounds. The deformation patterns of the C602– anions are similar within this group of compounds. However, there are no indications for significant deformations of the cages as a whole, which could be attributed to a Jahn‐Teller distortion.  相似文献   

8.
The double mercury salt [Hg(C5H8N2)2][HgClI3]·C2H6OS was prepared and its structure characterized. The [Hg(C5H8N2)2]2+ cation lies about an inversion centre and the [HgClI3]2? anion lies on a mirror plane. Cations and anions are linked to form a one‐dimensional polymer by weak Hg?Cl interactions [Hg?Cl 3.3744 (3) Å]. The mercury–carbene bond distance [2.076 (7) Å] is typical of a dicationic mercury–carbene species.  相似文献   

9.
Pentazole Derivates and Azides Formed from them: Potassium‐Crown‐Ether Salts of [O3S—p‐C6H4—N5] and [O3S—p‐C6H4—N3] O3S—p‐C6H4—N2+ was reacted with sodium azide at —50 °C in methanol, yielding a mixture of 4‐pentazolylbenzenesulfonate and 4‐azidobenzenesulfonate (amount‐of‐substance ratio 27:73 according to NMR). By addition of KOH in methanol at —50 °C a mixture of the potassium salts K[O3S—p‐C6H4—N5] and K[O3S—p‐C6H4—N3] was precipitated (ratio 60:40). A solution of this mixture along with 18‐crown‐6 in tetrahydrofurane yielded the crystalline pentazole derivate [THF‐K‐18‐crown‐6][O3S—p‐C6H4—N5]·THF by addition of petrol ether at —70 °C. From the same solution upon evaporation and redissolution in THF/petrol ether the crystalline azide [THF‐K‐18‐crown‐6][O3S—p‐C6H4—N3]·THF was obtained. A solution of the latter in chloroform/toluene under air yielded [K‐18‐crown‐6][O3S—p‐C6H4—N3]·1/3H2O. According to their X‐ray crystal structure determinations [THF‐K‐18‐crown‐6][O3S—p‐C6H4—N5]·THF and [THF‐K‐18‐crown‐6][O3S—p‐C6H4—N3]·THF have the same kind of crystal packing. Differences worth mentioning exist only for the atomic positions of the pentazole ring as compared to the azido group and for one THF molecule which is coordinated to the potassium ion; different orientations of the THF molecule take account for the different space requirements of the N5 and the N3 group. In [K‐18‐crown‐6][O3S—p‐C6H4—N3]·1/3H2O there exists one unit consisting of one [K‐18‐crown‐6]+ and one [O3S‐C6H4—N3] ion and another unit consisting of two [O3S‐C6H4—N3] ions joined via two [K‐18‐crown‐6]+ ions and one water molecule. The rate constants for the decomposition [O3S‐C6H4—N5] → [O3S‐C6H4—N3] + N2 in methanol were determined at 0 °C and —20 °C.  相似文献   

10.
The reaction of propane‐1,3‐diamine hydrochloride, 18‐crown‐6 and zinc(II) chloride in methanol solution yields the title complex salt [systematic name: propane‐1,3‐diaminium tetrachloridozincate(II)–1,4,7,10,13,16‐hexaoxacyclooctadecane (1/1)], (C3H12N2)[ZnCl4]·C12H24O6, with an unusual supramolecular structure. The diprotonated propane‐1,3‐diaminium cation forms an unexpected 1:1 supramolecular rotator–stator complex with the crown ether, viz. [C3H12N2(18‐crown‐6)]2+, in which one of the –NH3+ substituents nests in the crown and interacts through N—H...O hydrogen bonding. The other –NH3+ group interacts with the [ZnCl4]2− anion via N—H...Cl hydrogen bonding, forming cation–crown–anion ribbons parallel to [010].  相似文献   

11.
The structure of the title compound [systematic name: bis(adamantan‐1‐aminium) tetrachloridozincate(II)–1,4,7,10,13,16‐hexaoxacyclooctadecane–water (1/1/1)], (C10H18N)2[ZnCl4]·C12H24O6·H2O, consists of supramolecular rotator–stator assemblies and ribbons of hydrogen bonds parallel to [010]. The assemblies are composed of one protonated adamantan‐1‐aminium cation and one crown ether molecule (1,4,7,10,13,16‐hexaoxacyclooctadecane) to give an overall [(C10H18N)(18‐crown‐6)]+ cation. The –NH3+ group of the cation nests in the crown and links to the crown‐ether O atoms through N—H...O hydrogen bonds. The 18‐crown‐6 ring adopts a pseudo‐C3v conformation. The second adamantan‐1‐aminium forms part of ribbons of adamantan‐1‐aminium–water–tetrachloridozincate units which are interconnected by O—H...Cl, N—H...O and N—H...Cl hydrogen bonds via three different continuous rings with R54(12), R43(10) and R33(8) motifs.  相似文献   

12.
In methyl­aminium 4′,7‐dihydroxy­isoflavone‐3′‐sulfonate dihydrate, CH6N+·C15H9O7S·2H2O, 11 hydrogen bonds exist between the methyl­aminium cations, the iso­flavone‐3′‐sulfonate anions and the solvent water mol­ecules. In hexa­aqua­iron(II) bis­(4′,7‐diethoxy­isoflavone‐3′‐sulfonate) tetra­hydrate, [Fe(H2O)6](C19H17O7S)2·4H2O, 12 hydrogen bonds exist between the centrosymmetric [Fe(H2O)6]2+ cation, the isoflavone‐3′‐sulfonate anions and the solvent water mol­ecules. Additional π–π stacking inter­actions generate three‐dimensional supramolecular structures in both compounds.  相似文献   

13.
Molecular and Crystal Structure of Rubidium(dibenzo‐18‐crown‐6)pentaiodide [Rb(C20H24O6)]I5 [Rb(Dibenzo‐18‐crown‐6)]2(I5)2 is obtained as dark brown columns by reacting dibenzo‐18‐crown‐6, rubidium iodide, and iodine in a molar ratio of 1 : 1 : 6 in ethanole / dichlormethane (1:1). [Rb(C20H24O6)]2(I5)2 crystallizes with four formula units per unit cell in the orthorhombic space group Pnma with a = 1725.15(2) pm, b = 1863.76(3) pm and c = 1885.19(3) pm. The crystal structure consists of pentaiodide units I5, which are linked to one another by head‐to‐tail‐contacts. The I2 units, which stick out of the chain, are twisted against each other, in a way that neither a cis or a trans configuration is formed. By secondary bonding, the iodine atoms form nets of 18‐member planar rings with an almost rectangular form. This net‐like structural element has not been described up to now.  相似文献   

14.
Poly[bis(3,3′,5,5′‐tetramethyl‐4,4′‐bi‐1H‐pyrazole‐2,2′‐diium) γ‐octamolybdate(VI) dihydrate], {(C10H16N4)2[Mo8O26]·2H2O}n, (I), and bis(3,3′,5,5′‐tetramethyl‐4,4′‐bi‐1H‐pyrazole‐2,2′‐diium) α‐dodecamolybdo(VI)silicate tetrahydrate, (C10H16N4)2[SiMo12O40]·4H2O, (II), display intense hydrogen bonding between the cationic pyrazolium species and the metal oxide anions. In (I), the asymmetric unit contains half a centrosymmetric γ‐type [Mo8O26]4− anion, which produces a one‐dimensional polymeric chain by corner‐sharing, one cation and one water molecule. Three‐centre bonding with 3,3′,5,5′‐tetramethyl‐4,4′‐bi‐1H‐pyrazole‐2,2′‐diium, denoted [H2Me4bpz]2+ [N...O = 2.770 (4)–3.146 (4) Å], generates two‐dimensional layers that are further linked by hydrogen bonds involving water molecules [O...O = 2.902 (4) and 3.010 (4) Å]. In (II), each of the four independent [H2Me4bpz]2+ cations lies across a twofold axis. They link layers of [SiMo12O40]4− anions into a three‐dimensional framework, and the preferred sites for pyrazolium/anion hydrogen bonding are the terminal oxide atoms [N...O = 2.866 (6)–2.999 (6) Å], while anion/aqua interactions occur preferentially viaμ2‐O sites [O...O = 2.910 (6)–3.151 (6) Å].  相似文献   

15.
The results of seven cocrystallization experiments of the antithyroid drug 6‐methyl‐2‐thiouracil (MTU), C5H6N2OS, with 2,4‐diaminopyrimidine, 2,4,6‐triaminopyrimidine and 6‐amino‐3H‐isocytosine (viz. 2,6‐diamino‐3H‐pyrimidin‐4‐one) are reported. MTU features an ADA (A = acceptor and D = donor) hydrogen‐bonding site, while the three coformers show complementary DAD hydrogen‐bonding sites and therefore should be capable of forming an ADA/DAD N—H...O/N—H...N/N—H...S synthon with MTU. The experiments yielded one cocrystal and six cocrystal solvates, namely 6‐methyl‐2‐thiouracil–2,4‐diaminopyrimidine–1‐methylpyrrolidin‐2‐one (1/1/2), C5H6N2OS·C4H6N4·2C5H9NO, (I), 6‐methyl‐2‐thiouracil–2,4‐diaminopyrimidine (1/1), C5H6N2OS·C4H6N4, (II), 6‐methyl‐2‐thiouracil–2,4‐diaminopyrimidine–N,N‐dimethylacetamide (2/1/2), 2C5H6N2OS·C4H6N4·2C4H9NO, (III), 6‐methyl‐2‐thiouracil–2,4‐diaminopyrimidine–N,N‐dimethylformamide (2/1/2), C5H6N2OS·0.5C4H6N4·C3H7NO, (IV), 2,4,6‐triaminopyrimidinium 6‐methyl‐2‐thiouracilate–6‐methyl‐2‐thiouracil–N,N‐dimethylformamide (1/1/2), C4H8N5+·C5H5N2OS·C5H6N2OS·2C3H7NO, (V), 6‐methyl‐2‐thiouracil–6‐amino‐3H‐isocytosine–N,N‐dimethylformamide (1/1/1), C5H6N2OS·C4H6N4O·C3H7NO, (VI), and 6‐methyl‐2‐thiouracil–6‐amino‐3H‐isocytosine–dimethyl sulfoxide (1/1/1), C5H6N2OS·C4H6N4O·C2H6OS, (VII). Whereas in cocrystal (I) an R22(8) interaction similar to the Watson–Crick adenine/uracil base pair is formed and a two‐dimensional hydrogen‐bonding network is observed, the cocrystals (II)–(VII) contain the triply hydrogen‐bonded ADA/DAD N—H...O/N—H...N/N—H...S synthon and show a one‐dimensional hydrogen‐bonding network. Although 2,4‐diaminopyrimidine possesses only one DAD hydrogen‐bonding site, it is, due to orientational disorder, triply connected to two MTU molecules in (III) and (IV).  相似文献   

16.
The temperature dependence of heat capacity of crystalline bis(η6-ethylbenzene)chromium fulleride [(η6-EtPh)2Cr]·+ [C60]·− was studied in adiabatic vacuum calorimeter in the range of 6.7 to 344 K with an error of ±0.3%. Dependence of the parameters of EPR signal of bis(η6-ethylbenzene)chromium fulleride on temperature was studied by electron paramagnetic resonance (EPR) in the range of 120 to 290 K. In the range of 204 to 246 K, upon heating, reversible endothermic transformation was recorded, which is caused by the dissociation of dimer (C60)2 and formation of fulleride [(η6-EtPh)2Cr]·+ [C60]·−; its standard thermodynamic parameters were estimated and analyzed. Standard thermodynamic functions were calculated by the experimental data obtained: heat capacity, enthalpy, entropy, and Gibbs function of fulleride dimmer in the range of T → 0 to 204 K and monomer complex [(η6-EtPh)2Cr]·+ [C60]·− in the range of 246 to 344 K. Standard thermodynamic properties of fulleride under study, fullerides studied earlier, and fullerite C60 were compared.  相似文献   

17.
In the title compound, 2C9H6N2O2·C12H24O6·4H2O, the 18‐crown‐6 (1,4,7,10,13,16‐hexaoxacyclooctadecane) molecule resides across a centre of inversion. The adduct exists as a molecular hydrogen‐bonded complex featuring integration of two kinds of synthons, viz. [(18‐crown‐6)(H2O)4] [O...O = 2.8645 (18)–2.9014 (18) Å] and an oxime/aqua ensemble, PhC(O)C(CN)NOH...OH2 [O...O = 2.5930 (18) Å]. The reliability of the oxime/aqua motif, sustained by the highly acidic cyanooxime, is an essential factor in the construction of multicomponent cocrystals and the accommodation of oxime species in macrocyclic hosts. The supramolecular structure is generated by the alternation of hydrophilic [(18‐crown‐6)(H2O)4] layers and bilayers of benzoyl(hydroxyimino)acetonitrile molecules, resulting in stacking interactions between the phenyl and cyano groups of 3.666 (2) Å.  相似文献   

18.
The cationic complexes with hexacoordinate silicon(IV), tris[1‐oxopyridine‐2‐olato(1–)]silicon(IV) trifluoromethanesulfonate ( 4 ), 4 · 1/2 C5H5NO2, tris[1‐oxopyridine‐2‐olato(1–)]silicon(IV) ethyl sulfate–ethanol ( 5 · EtOH), and tris[1‐oxopyridine‐2‐olato(1–)]silicon(IV) isopropyl sulfate ( 6 ), were synthesized. The identities of 4 , 4 · 1/2 C5H5NO2, 5 · EtOH, and 6 were established by elemental analyses (C, H, N, S), mass‐spectrometric studies (FAB MS) as well as solid‐state (29Si) and solution (1H, 13C, 19F, 29Si) NMR experiments. In addition, 4 · 1/2 C5H5NO2 was structurally characterized by single‐crystal X‐ray diffraction.  相似文献   

19.
Two Tetrachlorothiotantalates: [Na‐15‐crown‐5][TaSCl4 · dioxane] and [Na‐15‐crown‐5]2[(TaSCl4)2dioxane] · S8 During the reaction of Na2S4, TaCl5 and 15‐crown‐5 in dichloromethane the crown ether partly suffers degradation to 1,4‐dioxane. Aside from sulfur, [Na‐15‐crown‐5][TaSCl4 · dioxane] was the first product obtained. It crystallizes in the monoclinic space group P21/n with a = 1066.1, b = 1781.3, c = 1258.3 pm, β = 97.14°, Z = 4. In the [TaSCl4 · dioxane] ion a dioxane molecule is loosely bonded to a square‐pyramidal TaSCl4 unit; two chlorine atoms are in contact with an Na+ ion. Upon standing with the mother liquor [Na‐15‐crown‐5]2[(TaSCl4)2dioxane] · S8 was formed. It crystallizes in the monoclinic space group C2/m; a = 1768.5, b = 1084.0, c = 1517.3 pm, β = 118.46°, Z = 4. In this case a dioxane molecule is coordinated with two TaSCl4 units. The [(TaSCl4)2 · dioxane]2– ions and S8 molecules alternate in the stacking direction b.  相似文献   

20.
The X‐ray structure analysis of the unexpected product of the reaction between 4‐(4‐methyl­phenyl)­but‐3‐en‐2‐one and amino­guanidine revealed the title compound, C12H17N4+·C2H3O2?·0.5C3H6O, consisting of a protonated amidine moiety joined to a substituted pyrazoline ring at the N1 atom. The amidine group is protonated and the positive charge is delocalized over the three C—N bonds in a similar manner to that found in guanidinium salts. The amidinium moiety of the cation is linked to the acetate anions through four N—H?O hydrogen bonds, with N?O distances of 2.749 (4), 2.848 (4), 2.904 (4) and 2.911 (4) Å. The pyrazoline ring adopts a flattened envelope conformation and the substituted phenyl ring is oriented perpendicular to the attached heterocycle. The acetone solvate molecule lies across a twofold rotation axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号