首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Duan J  Jiang X  Ni S  Yang M  Zhan J 《Talanta》2011,85(4):1738-1743
This paper described an investigation of a novel eco-friendly fluorescence sensor for Hg2+ ions based on N-acetyl-l-cysteine (NAC)-capped ZnS quantum dots (QDs) in aqueous solution. By using safe and low-cost materials, ZnS QDs modified by NAC were easily synthesized in aqueous medium via a one-step method. The quantitative detection of Hg2+ ions was developed based on fluorescence quenching of ZnS QDs with high sensitivity and selectivity. Under optimal conditions, its response was linearly proportional to the concentration of Hg2+ ions in a range from 0 to 2.4 × 10−6 mol L−1 with a detection limit of 5.0 × 10−9 mol L−1. Most of common physiologically relevant cations and anions did not interfere with the detection of Hg2+. The proposed method was applied to the trace determination of Hg2+ ions in water samples. The possible quenching mechanism was also examined by fluorescence and UV-vis absorption spectra.  相似文献   

2.
Water-soluble luminescent CdSe quantum dots surface-modified with triethanolamine (TEA-CdSe-QDs) were prepared with high stability. The fluorescence of the TEA-CdSe-QDs was greatly quenched only when Hg2+ and I coexisted in the solution, whereas addition of either Hg2+ or I individually has no noticeable effect on the fluorescence emission. Such a unique quenching effect could be used for reciprocal recognition of mercury (II) ions and/or iodide anions in aqueous solution with rather high selectivity and sensitivity. The detection limits of Hg2+ or I ion were 1.9 × 10−7 mol L-1 or 2.8 × 10−7 mol L−1, respectively. The adequate experiments showed that iodine (I) anions could bridge between TEA-CdSe-QDs and Hg2+ to form a stable complex (QDs-I-Hg2+) and the following effective electron transfer from the QDs to the Hg2+ could be responsible for the fluorescence quenching of QDs.  相似文献   

3.
A fluorescent probe 1 for Hg2+ based on a rhodamine-coumarin conjugate was designed and synthesized. Probe 1 exhibits high sensitivity and selectivity for sensing Hg2+, and about a 24-fold increase in fluorescence emission intensity is observed upon binding excess Hg2+ in 50% water/ethanol buffered at pH 7.24. The fluorescence response to Hg2+ is attributed to the 1:1 complex formation between probe 1 and Hg2+, which has been utilized as the basis for the selective detection of Hg2+. Besides, probe 1 was also found to show a reversible dual chromo- and fluorogenic response toward Hg2+ likely due to the chelation-induced ring opening of rhodamine spirolactam. The analytical performance characteristics of the proposed Hg2+-sensitive probe were investigated. The linear response range covers a concentration range of Hg2+ from 8.0 × 10−8 to 1.0 × 10−5 mol L−1 and the detection limit is 4.0 × 10−8 mol L−1. The determination of Hg2+ in both tap and river water samples displays satisfactory results.  相似文献   

4.
Fei Wang  Xiaohan Wei  Shusheng Zhang 《Talanta》2010,80(3):1198-1204
The π-A isotherms and UV-vis spectra of the transferred films suggested that the monolayer of p-tert-butylthiacalix[4]arene can coordinate with Hg2+ at the air-water surface. From these observations, a glassy carbon electrode coated with Langmuir-Blodgett film of p-tert-butylthiacalix[4] arene as a new voltammetric sensor is designed for the determination of trace amounts of Hg2+. Compared with bare glassy carbon electrode and modified glassy carbon electrode using direct coating method, the Langmuir-Blodgett film-modified electrode can greatly improve the measuring sensitivity of Hg2+. Under the selected conditions, the Langmuir-Blodgett film-modified electrode in 0.1 mol L−1 H2SO4 + 0.01 mol L−1 KCl solution shows a linear voltammetric response for Hg2+ in the range of 5.0 × 10−10 to 1.5 × 10−7 mol L−1, with a detection limit of 2.0 × 10−10 mol L−1. The proposed method was also applied to determine Hg2+ in water samples (tap, lake and river water). In addition, the fabricated electrode exhibited a distinct advantage of simple preparation, non-toxicity, good reproducibility and good stability.  相似文献   

5.
6.
Yang F  Ma Q  Yu W  Su X 《Talanta》2011,84(2):411-415
A novel direct quantificational method through naked-eye colorimetric analysis of Hg2+ was constructed based on different degree of the fluorescence quenching of bi-color quantum dots (QDs) multilayer films (2-QDMF). The functional multilayer films were assembled by layer-by-layer (LBL) deposition of oppositely charged CdTe QDs and poly(dimethyldiallylemmonium chloride) (PDDA). Then the outermost layer of 2-QDMF was cross-linked to bovine serum albumin (BSA), polyethylene glycol (PEG) or glutathione (GSH). It was found that when BSA modified quartz slides were immersed into solutions containing Hg2+ and Cu2+ respectively, the 2-QDMF can be quenched by Hg2+, but not by Cu2+. Under the optimization conditions, the quenched photoluminescence (PL) intensities of multilayer films were almost linearly proportional to the concentration of Hg2+ in the range of 1.0 × 10−8 to 1.0 × 10−6 mol L−1 and the detection limit was 4.5 × 10−9 mol L−1. The proposed method is intuitional and convenient, which can be applied to the determination of trace Hg2+ in the artificial water sample with satisfactory results.  相似文献   

7.
Herein, an innovative and simple strategy for synthesizing high fluorescent Cu nanoclusters was successfully established while l-cysteine played a role as the stabilizer. Meaningfully, the current Cu nanoclusters together with a quantum yield of 14.3% were prepared in aqueous solution, indicating their extensive applications. Subsequently, the possible fluorescence mechanism was elucidated by fluorescence, UV–vis, HR-TEM, FTIR, XPS, and MS. Additionally, the CuNCs were employed for assaying Hg2+ on the basis of the interactions between Hg2+ and l-cysteine; thus facilitating the quenching of their fluorescence. The proposed analytical strategy permitted detections of Hg2+ in a linear range of 1.0 × 10−7 mol L−1 × 10−3 mol L−1, with a detection limit of 2.4 × 10−8 mol L−1 at a signal-to-noise ratio of 3. Significantly, this CuNCs described here were further applied for coding and fluorescent staining, suggesting may broaden avenues toward diverse applications.  相似文献   

8.
A fluorometric method for quantity analysis of biothiols was developed using a graphene oxide (GO)-based “molecular beacon”-like probe, which consisted of FITC labeled thymine (T)-rich single-stranded DNA (ssDNA), GO and Hg2+ ions. The labeled ssDNA containing T–T mismatches would self-hybridize to duplex in the presence of Hg2+, which can avoid its adsorption on GO and the fluorescence of this GO-based probe was recovered. The fluorescence of the probe quenched after the addition of biothiols such as glutathione (GSH) and cysteine (Cys) owing to thiol groups can selectively competitive ligation of Hg2+ ions with T–T mismatches. In the present work, the GO-based probe was used for the determination of GSH and Cys. Under the optimal conditions, a linear correlation was established between fluorescence intensity ratio I0/I and the concentration of GSH in the range of 2.0 × 10−9–5.0 × 10−7 mol L−1 with a detection limit of 1.0 × 10−9 mol L−1. The linear range for Cys is from 5.0 × 10−9 to 4.5 × 10−7 mol L−1 with a detection limit of 2.0 × 10−9 mol L−1. The proposed method was applied to the determination of GSH in human serum and cell extract samples with satisfactory results.  相似文献   

9.
A new resonance light scattering (RLS) spectrometric method for mercury ions (Hg2+) in aqueous solutions with sulfur ion (S2−) modified gold nanoparticles (Au-NPs-S) has been developed in this contribution. It was found that S2− at the surface of Au-NPs resulting from the surface modification can interact with Hg2+ to form very stable S-Hg-S bonds when Hg2+ concentration is lower than that of S2−, resulting in the aggregation of Au-NPs-S and causing enhanced RLS signals. The enhanced RLS intensities (ΔIRLS) characterized at 392 nm were found to be proportional to the concentration of Hg2+ in the range of 0.025-0.25 μmol L−1 with a detection limit (3σ) of 0.013 μmol L−1. Our results showed that this approach has excellent selectivity for Hg2+ over other substances in aqueous solutions.  相似文献   

10.
Yu Y  Lin LR  Yang KB  Zhong X  Huang RB  Zheng LS 《Talanta》2006,69(1):103-106
A novel and simple fluorophore, p-dimethylaminobenzaldehyde thiosemicarbazone (DMABTS), was prepared in order to find available fluorescent chemosensor for mercuric ion in aquesous solution. DMABTS emitted fluorescence at 448 nm in aqueous solution and its fluorescence intensity was completely quenched upon interaction with Hg2+ ions, which should be attributed to the 1:1 complex formation between DMABTS and Hg2+. The binding constant of the complex was determined as 7.48 × 106 mol l−1. The linear range of quantitative detection of 0 to 5.77 × 10−6 mol l−1 and the detection limit of 7.7 × 10−7 mol l−1 for Hg2+ in the 6.3 × 10−6 mol l−1 DMABTS aqueous solution were obtained from a calibration curve. The coexistence of several transition metal ions and anions did interfere the fluorometric titration of Hg2+ ion by less than 4% in the emission change.  相似文献   

11.
A simple and sensitive method to determine Hg2+ was developed by combining solution-cathode glow discharge atomic emission spectrometry (SCGD-AES) with flow injection (FI) based on on-line solid-phase extraction (SPE). We synthesized l-cysteine-modified mesoporous silica and packed it in an SPE microcolumn, which was experimentally determined to possess a good mercury adsorption capacity. An enrichment factor of 42 was achieved under optimized Hg2+ elution conditions, namely, an FI flow rate of 2.0 mL min−1 and an eluent comprised of 10% thiourea in 0.2 mol L−1 HNO3. The detection limit of FI–SCGD-AES was determined to be 0.75 μg L−1, and the precision of the 11 replicate Hg2+ measurements was 0.86% at a concentration of 100 μg L−1. The proposed method was validated by determining Hg2+ in certified reference materials such as human hair (GBW09101b) and stream sediment (GBW07310).  相似文献   

12.
A high-pressure microwave digestion was applied for microwave-assisted extraction (MAE) of mercury species from sediments and zoobenthos samples. A mixture containing 3 mol L−1 HCl, 50% aqueous methanol and 0.2 mol L−1 citric acid (for masking co-extracted Fe3+) was selected as the most suitable extraction agent. The efficiency of proposed extraction method was better than 95% with R.S.D. below 6%. A preconcentration method utilizing a “homemade” C18 solid phase extraction (SPE) microcolumns was developed to enhance sensitivity of the mercury species determination using on-column complex formation of mercury-2-mercaptophenol complexes. Methanol was chosen for counter-current elution of the retained mercury complexes achieving a preconcentration factor as much as 1000. The preconcentration method was applied for the speciation analysis of mercury in river water samples. The high-performance liquid chromatography-cold vapour atomic fluorescence spectrometric (HPLC/CV-AFS) method was used for the speciation analysis of mercury. The complete separation of four mercury species was achieved by an isocratic elution of aqueous methanol (65%/35%) on a Zorbax SB-C18 column (4.6 mm × 150 mm, 5 μm) using the same complexation reagent (2-mercaptophenol). The limits of detection were 4.3 μg L−1 for methylmercury (MeHg+), 1.4 μg L−1 for ethylmercury (EtHg+), 0.8 μg L−1 for inorganic mercury (Hg2+), 0.8 μg L−1 for phenylmercury (PhHg+).  相似文献   

13.
Zhen Fang 《Tetrahedron letters》2008,49(14):2311-2315
A cationic 5,15-(p-(9,9-bis(6-trimethylammoniumhexyl)fluorenylethynyl)phenyl)porphyrin tetrabromide was synthesized and the self-assembled films were used for Hg2+ detection in aqueous media. The detection response is based on fluorescence quenching of the porphyrin molecule upon coordination with Hg2+. The detection shows high selectivity for Hg2+ over Cu2+, Zn2+, Pb2+, Cd2+, Mn2+, Ni2+, Co2+ and Ca2+. A linear response toward Hg2+ in a concentration range of 1 × 10−10-1 × 10−6 M was observed for the film with a detection limit of 0.1 nM. The cationic porphyrin film shows higher stability and significant improvement in detection sensitivity, as compared to other porphyrin-based sensors. The amphiphilic cationic nature of the porphyrin synthesized also allows for the direct deposition of a porphyrin layer on a bare glass surface through self-assembly.  相似文献   

14.
A new fluorescein-based chemodosimeter (II) for Hg2+ ion was designed and synthesized, and it displayed excellent selective and sensitive toward Hg2+ ion over other commonly metal ions in aqueous media. II was a colorless, non-fluorescent compound. Upon addition of Hg2+ to the solution of II, the thiosemicarbazide moiety of II would undergo an irreversible desulfurization reaction to form its corresponding oxadiazole (IV), a colorful and fluorescent product. During this process, the spirocyclic ring of II was opened, causing instantaneous development of visible color and strong fluorescence emission in the range of 500-600 nm. Based on the above mechanism, a fluorogenic Hg2+-selective chemodosimeter was developed. The fluorescence increase is linearly with Hg2+ concentration up to 1.0 μmol L−1 with a detection limit of 8.5 × 10−10 mol L−1 (3σ). Compared with the rhodamine-type chemodosimeter, II is more stable in aqueous media and exhibits higher sensitivity toward Hg2+. The findings suggest that II will serve as a practical chemodosimeter for rapid detection of Hg2+ concentrations in realistic media.  相似文献   

15.
A ratiometric fluorescence sensor for Be2+ has been fabricated via alternate assembly of 2-(3,6-disulfo-8-hydroxynaphthylazo)-1,8-dihydroxynaphthalene-3,6-disulfonate (Beryllon II) and MgAl-LDH nanosheets on quartz substrates using the layer-by-layer (LBL) deposition technique. UV–vis absorption and the fluorescence emission spectroscopy indicate a stepwise and regular growth of the Beryllon II/LDH UTFs upon increasing deposition cycle. The film of Beryllon II/LDH possesses a periodic layered structure perpendicular to the substrate revealed by X-ray diffraction and scanning electron microscopy. Atomic force microscopy images show that the film surface is continuous and uniform. The Beryllon II/LDH UTFs display ratiometric fluorescence response for Be2+ with a linear response range in 1.0 × 10−7–1.9 × 10−6 mol L−1 and a detection limit of 4.2 × 10−9 mol L−1. Furthermore, the ratiometric sensor exhibits good repeatability, high stability (thermal, storage and mechanical) as well as excellent selectivity toward Be2+. XPS and Raman measurements demonstrate that the specific response of the sensor is attributed to the coordination between Be2+ and Beryllon II in the UTF. The Beryllon II/LDH UTFs in this work can be potentially used as a chemosensor for the detection of Be2+ in the environmental and biomedical field.  相似文献   

16.
Quintino MS  Araki K  Toma HE  Angnes L 《Talanta》2006,68(4):1281-1286
The performance of a glassy carbon electrode modified with a porphyrin film formed by the [Co(TPyP){Ru(bipy)2Cl}4](TFMS)5·H2O complex for the analysis of sodium metabisulfite in pharmaceuticals is described. The sensor can be rapidly and easily prepared by drop-casting of a microliter volume of a diluted methanolic solution of the complex onto the electrode surface. The modified electrode with a supramolecular cobalt porphyrin film led to more favorable responses than the bare electrode. This can be ascribed to the much faster electron transfer processes to the analyte mediated by the tetraruthenated porphyrin and to the protection of the electrode against fouling. The association of the amperometric sensor with the batch injection analysis technique led to results that combine good repeatability of the current responses (relative standard deviation of 0.94% for 30 measurements), wide linear dynamic range (2.5 × 10−7 mol L−1 to 5.0 × 10−4 mol L−1), high sensitivity and low limits of detection (8.1 × 10−8 mol L−1) and quantification (2.7 × 10−7 mol L−1). The system was successfully applied to sodium metabisulfite quantification in commercial samples of injection formulations of sodium (or potassium) diclofenac. The results compared well with those obtained by the polarographic method.  相似文献   

17.
Chen J  Zheng A  Chen A  Gao Y  He C  Kai X  Wu G  Chen Y 《Analytica chimica acta》2007,599(1):134-142
A gold-nanoparticles (Au NPs)-Rhodamine 6G (Rh6G) based fluorescent sensor for detecting Hg (II) in aqueous solution has been developed. Water-soluble and monodisperse gold nanoparticles (Au NPs) has been prepared facilely and further modified with thioglycolic acid (TGA). Free Rh6G dye was strongly fluorescent in bulk solution. The sensor system composing of Rh6G and Au NPs fluoresce weakly as result of fluorescence resonance energy transfer (FRET) and collision. The fluorescence of Rh6G and Au NPs based sensor was gradually recovered due to Rh6G units departed from the surface of functionalized Au NPs in the presence of Hg(II). Based on the modulation of fluorescence quenching efficiency of Rh6G-Au NPs by Hg(II) at pH 9.0 of teraborate buffer solution, a simple, rapid, reliable and specific turn-on fluorescent assay for Hg(II) was proposed. Under the optimum conditions, the fluorescence intensity of sensor is proportional to the concentration of Hg(II). The calibration graphs are linear over the range of 5.0 × 10−10 to 3.55 × 10−8 mol L−1, and the corresponding limit of detection (LOD) is low as 6.0 × 10−11 mol L−1. The relative standard deviation of 10 replicate measurements is 1.5% for 2.0 × 10−9 mol L−1 Hg(II). In comparison with conventional fluorimetric methods for detection of mercury ion, the present nanosensor endowed with higher sensitivity and selectivity for Hg(II) in aqueous solution. Mercury(II) of real environmental water samples was determined by our proposed method with satisfactory results that were obtained by atomic absorption spectroscopy (AAS).  相似文献   

18.
Honglei Mu 《Tetrahedron letters》2007,48(31):5525-5529
A novel two-channel metal ion sensor has been synthesized from macrocyclic dioxotetraamine and 1,8-naphthalimide derivative. The metal ion-selective signaling behaviors of the sensor were investigated. The sensor presented the selective coloration for Cu2+ and Hg2+ that can be detected by the naked-eye, respectively. Besides, the addition of Cu2+ and Hg2+ quenched the fluorescence of 1 obviously and the detection limit was found to be 3 × 10−7 M for Cu2+ and 7 × 10−7 M for Hg2+. This sensor can be utilized for the visual and spectroscopic detection of Cu2+ or Hg2+ in the presence of the other competing metal ions.  相似文献   

19.
A novel biomimetic sensor for rutin determination based on a dinuclear complex [MnIIIMnII(Ldtb)(μ-OAc)2]BPh4 containing an unsymmetrical dinucleating ligand, 2-[N,N-bis(2-pyridylmethyl)-aminomethyl]-6-[N-(3,5-di-tert-butyl-2-oxidoben-zyl)-N-(2-pyridylamino)aminomethyl]-4-methylphenol (H2Ldtb), as a manganese peroxidase mimetic was developed. Several parameters were investigated to evaluate the performance of the biomimetic sensor obtained after the incorporation of the dinuclear complex in a carbon paste. The best performance was obtained in 75:15:10% (w/w/w) of the graphite powder:Nujol:MnIIIMnII complex, 0.1 mol L−1 phosphate buffer solution (pH 6.0) and 4.0 × 10−5 mol L−1 hydrogen peroxide. The response of the sensor towards rutin concentration was linear using square wave voltammetry in the range of 9.99 × 10−7 to 6.54 × 10−5 mol L−1 (r = 0.9998) with a detection limit of 1.75 × 10−7 mol L−1. The recovery study performed with pharmaceuticals ranged from 96.6% to 103.2% and the relative standard deviation was 1.85% for a solution containing 1.0 × 10−3 mol L−1 rutin (n = 6). The lifetime of this biomimetic sensor was 200 days (at least 750 determinations). The results obtained for rutin in pharmaceuticals using the biomimetic sensor and those obtained with the official method are in agreement at the 95% confidence level.  相似文献   

20.
In this study, a multiplex fluorescence sensor for successive detection of Fe3+, Cu2+ and Hg2+ ions based on “on–off” of fluorescence of a single type of gold nanoclusters (Au NCs) is described. Any of the Fe3+, Cu2+ and Hg2+ ions can cause quenching fluorescence of Au NCs, which established a sensitive sensor for detection of these ions respectively. With the introduction of ethylene diamine tetraacetic acid (EDTA) to the system of Au NCs and metal ions, a restoration of fluorescence may be found with the exception of Hg2+. A highly selective detection of Hg2+ ion is, thus, achieved by masking Fe3+ and Cu2+. On the other hand, the masking of Fe3+ and Cu2+ leads to the enhancement of fluorescence of Au NCs, which in turn provides an approach for successive determination of Fe3+ and Cu2+ based on “on–off” of fluorescence of Au NCs. Moreover, this assay was applied to the successful detection of Fe3+, Cu2+ and Hg2+ in fish, a good linear relationship was found between these metal ions and the degree of quenched fluorescent intensity. The dynamic ranges of Hg2+, Fe3+ and Cu2+ were 1.96 × 10−10–1.01 × 10−9, 1.28 × 10−7–1.27 × 10−6 and 1.2 × 10−7–1.2 × 10−6 M with high sensitivity (the limit of detection of Fe3+ 2.0 × 10−8 M, Cu2+ 1.9 × 10−8 M and Hg2+ 2 × 10−10 M). These results indicate that the assay is suitable for sensitive detection of these metal ions even under the coexistence, which can not only determine all three kinds of metal ions successively but also of detecting any or several kinds of metal ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号