首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Palladium sensors based on two neutral ionophores, N,N′-bis(acetylacetone) cyclohexanediamine (L1) and N,N′-bis(o-hydroxyacetophenone)-1,2-cyclohexanediamine (L2) for quantification of palladium ions are described. Effect of various plasticizers (o-NPOE, DBP, DEP, DOP, TBP, and CN) and anion excluder, sodium tetra phenyl borate (NaTPB) has been studied. The best performance is obtained with a membrane composition of PVC:o-NPOE:ionophore (L1):NaTPB of 150:300:5:5 (%, w/w). The sensor exhibits significantly enhanced selectivity towards palladium ion over the concentration range 1.0 × 10−8 to 1.0 × 10−1 M with a lower detection limit of 4.0 × 10−9 M and a Nernstian compliance (29.1 ± 0.3 mV decade−1 of activity) within pH range 2.0-6.0 and fast response time of 10 s. Influence of the membrane composition and possible interfering ions has also been investigated on the response properties of the electrode. Fast and stable response, good reproducibility and long-term stability of the sensor are demonstrated. The sensor has been found to work satisfactorily in partially non-aqueous media up to 20% (v/v) content of methanol, ethanol and acetonitrile and could be used for a period of 4 months. Selectivity coefficients determined with fixed interference method (FIM) indicate high selectivity for palladium. The proposed electrode shows fairly good discrimination of palladium from other cations. The application of prepared sensor has been demonstrated in determination of palladium ions in spiked water sample.  相似文献   

2.
Praseodymium ion selective polyvinyl chloride (PVC) membrane sensors, based on two new Schiff's bases 1,3-diphenylpropane-1,3-diylidenebis(azan-1-ylidene)diphenol (M1) and N,N′-bis(pyridoxylideneiminato) ethylene (M2) have been developed and studied. The sensor having membrane composition of PVC: o-NPOE: ionophore (M1): NaTPB (w/w; mg) of 150: 300: 8: 5 showed best performances in comparison to M2 based membranes. The sensor based on (M1) exhibits the working concentration range 1.0 × 10−8 to 1.0 × 10−2 M with a detection limit of 5.0 × 10−9 M and a Nernstian slope 20.0 ± 0.3 mV decade−1 of activity. It exhibited a quick response time as <8 s and its potential responses were pH independent across the range of 3.5-8.5.The influence of the membrane composition and possible interfering ions have also been investigated on the response properties of the electrode. The sensor has been found to work satisfactorily in partially non-aqueous media up to 15% (v/v) content of methanol, ethanol or acetonitrile and could be used for a period of 3 months. The selectivity coefficients determined by using fixed interference method (FIM) indicate high selectivity for praseodymium(III) ions over wide variety of other cations. To asses its analytical applicability the prepared sensor was successfully applied for determination of praseodymium(III) in spiked water samples.  相似文献   

3.
N,N′,N″,N′′′-1,5,8,12-tetraazadodecane-bis(salicylaldiminato)(H2L) has been used as ionophore for preparing Mn2+ selective sensor. Membranes of different composition with regard to ratio of H2L:PVC:NPOE:NaTPB have been prepared and investigated. The best performance was obtained with the membrane of composition 10:150:150:10 (H2L:PVC:NPOE:NaTPB) (w/w; mg). This membrane generated linear potential response in the concentration range of 5.0 × 10−6 to 1.0 × 10−1 M with a Nernstian slope of 30.0 mV/decade of activity and fast response time (10 s). Hydrogen ion does not effect to the performance of sensor in the pH range 3.0-6.5. The sensor was found to be sufficient selective for Mn2+ over a number of alkali, alkaline and heavy metal ions and could therefore be used for the determination of manganese in various samples by direct potentiometry.  相似文献   

4.
Vinod K. Gupta  Manoj K. Pal 《Talanta》2010,82(4):1136-1142
A new terbium selective sensor based on N-(2-hydroxyphenyl)-3-(2-hydroxyphenylhydroxyphenylimino)-N-phenylbutanamidine (L1) and N,N′-bis((1H-indole-3-yl)methylene)butane-1,4 diamine (L2) as a ionophore is reported. Effect of various plasticizers; 2-nitrophenyloctylether (o-NPOE), dibutyl butylphosphonate (DBBP), chloronaphthelene (CN), dioctylphthalate (DOP) and tri-(2-ethylhexyl)phosphate (TEHP) with anion excluder, potassium tetrakis (p-chloropheny1)borate (KTpClPB) have been studied. The membrane with a composition of ionophore (L1):KTpClPB:PVC:o-NPOE (w/w, %) in ratio of 3.0:5.0:30.0:62.0 exhibited enhanced selectivity towards terbium ions (III) in the concentration range of 3.5 × 10−7 to 1.0 × 10−2 M with a detection limit of 1.2 × 10−7 M and a Nernstian slope (20.0 ± 0.5 mV dec−1 activity). The sensors showed the working pH range to be 3.5-7.5 with response time of 11 s. The sensor has been found to work satisfactorily in partially non-aqueous media up to 15% (v/v) content of methanol, ethanol or acetonitrile and could be used for a period of 3 months. The selectivity coefficients indicated high selectivity for terbium (III). The fast and stable response, good reproducibility and long-term stability of the sensors were observed. The application of the sensor has been demonstrated in determination of terbium (III) ions in spiked water samples.  相似文献   

5.
The two macrocyclic pendant ligands 3,4,5:12,13,14-dipyridine-2,6,11,15-tetramethyl-1,7,10,16-tetramethylacrylate-1,4,7,10,13,16-hexaazacyclooctadeca-3,13-di ene (L1) and 3,4,5:12,13,14-dipyridine-2,6,11,15-tetramethyl-1,7,10,16-tetra(2-cyano ethane)-1,4,7,10,13,16-hexaazacyclooctadeca-3,13-diene (L2) have been synthesized and explored as neutral ionophores for preparing poly(vinylchloride) (PVC) based membrane sensors selective to Tb(III) ions. Effects of various plasticizers and anion excluders were studied in detail and improved performance was observed. The best performance was obtained for the membrane sensor having a composition of L1: PVC:1-CN:NaTPB in the ratio of 6: 32: 58: 4 (w/w; mg). The performance of the membrane based on L1 was compared with polymeric membrane electrode (PME) as well as with coated graphite electrode (CGE). The electrodes exhibit Nernstian slope for Tb3+ ions with limits of detection of 3.4 × 10−8 mol L−1 for PME and 5.7 × 10−9 mol L−1 for CGE. The response time for PME and CGE was found to be 10 s and 8 s, respectively. The potentiometric responses are independent of the pH of the test solution in the pH range 3.0-7.5 for PME and 2.0-8.5 for CGE. The CGE has found to work satisfactorily in partially non-aqueous media upto 30% (v/v) content of methanol, ethanol and 20% (v/v) content of acetonitrile and could be used for a period of 5 months. The CGE was used as indicator electrode in the potentiometric titration of Tb3+ ions with EDTA and in determination of fluoride ions in various samples. It can also be used in direct determination of Tb3+ ions in tap water and various binary mixtures with quantitative results.  相似文献   

6.
The two chromium chelates of Schiff bases, N-(acetoacetanilide)-1,2-diaminoethane (L1) and N,N′-bis(acetoacetanilide)-triethylenetetraammine (L2), have been synthesized and explored as neutral ionophores for preparing poly(vinylchloride) (PVC) based membrane sensors selective to Cr(III). The addition of lipophilic anion excluder (NaTPB) and various plasticizers viz. o-Nitrophenyloctyl ether (o-NPOE), dioctylpthalate (DOP), dibutylphthalate (DBP), tris(2-ethylhexyl)phosphate (TEHP), and benzyl acetate (BA) have found to improve the performance of the sensors. The best performance was obtained for the membrane sensor having a composition of L1:PVC:DBP:NaTPB in the ratio 5:150:250:3 (w/w). The sensor exhibits Nernstian response in the concentration range 8.9 × 10−8 to 1.0 × 10−1 M Cr3+ with limit of detection 5.6 × 10−8 M. The proposed sensor manifest advantages of relatively fast response (10 s) and good selectivity over some alkali, alkaline earth, transition and heavy metal ions. The selectivity behavior of the proposed electrode revealed a considerable improvement as compared to the best previously PVC-membrane electrode for chromium(III) ion. The potentiometric response of the proposed sensor was independent of pH of the test solution in the range of 2.0-7.0. The sensor has found to work satisfactorily in partially non-aqueous media up to 20% (v/v) content of methanol, ethanol and acetonitrile and could be used for a period of 3 months. The proposed electrode was used as an indicator electrode in potentiometric titration of chromium ion with EDTA and in direct determination in different water and food samples.  相似文献   

7.
1-(Phenylselenomethyl)-1H-benzotriazole (L1) and 1-(4-methoxyphenyltelluromethyl)-1H-benzotriazole (L2) have been synthesized by reacting 1-(chloromethyl)-1H-benzotriazole with in situ generated nucleophiles PhSe and ArTe, respectively. The complexes of L1 and L2 with Pd(II) and Ru(II)(η6-p-cymene) have been synthesized. Proton, carbon-13, Se-77 and/or Te-125 NMR spectra authenticate both the ligands and their complexes. The single crystal structures of L1, L2 and [RuCl(η6-p-cymene)(L)][PF6] (L = L1: 3, L = L2: 4) have been solved. The Ru-Se and Ru-Te bond lengths have been found 2.4801(11) and 2.6183(10) Å, respectively. The palladium complexes, [PdCl2(L)] (L = L1: 1, L = L2: 2) have been explored for Heck and Suzuki-Miyaura C-C coupling reactions. The TON values are upto 95,000. The Ru-complexes have been found promising for catalytic oxidation of alcohols (TON ∼ 7.8-9.4 × 104). The complexes of telluroether ligands are as efficient catalysts as those of selenoether ones and in fact better for catalytic oxidation.  相似文献   

8.
The reactions of Cu(ClO4)2·6H2O with 6-(benzylamino)purine derivatives in a stoichiometric 1:2 metal-to-ligand ratio led to the formation of penta-coordinated dinuclear complexes of the formula [Cu2(μ-L18)4(ClO4)2](ClO4)2·nsolv, where L1 = 6-(2-fluorobenzylamino)purine (complex 1), L2 = 6-(3-fluorobenzylamino)purine (2), L3 = 6-(4-fluorobenzylamino)purine (3), L4 = 6-(2-chlorobenzylamino)purine (4), L5 = 6-(3-chlorobenzylamino)purine (5), L6 = 6-(4-chlorobenzylamino)purine (6), L7 = 6-(3-methoxybenzylamino)purine (7) and L8 = 6-(4-methoxybenzylamino)purine (8); n = 0–4 and solv = H2O, EtOH or MeOH. All the complexes have been fully characterized by elemental analysis, FTIR, UV–Vis and EPR spectroscopy, and by magnetic and conductivity measurements. Variable temperature (80–300 K) magnetic susceptibility data of 18 showed the presence of a strong antiferromagnetic exchange interaction between two Cu(II) (S = 1/2) atoms with J ranging from −150.0(1) to −160.3(2) cm−1. The compound 6·4EtOH·H2O was structurally characterized by single crystal X-ray analysis. The Cu?Cu separation has been found to be 2.9092(8) Å. The antiradical activity of the prepared compounds was tested by in vitro SOD-mimic assay with IC50 in the range 8.67–41.45 μM. The results of an in vivo antidiabetic activity assay were inconclusive and the glycaemia in pre-treated animals did not differ significantly from the positive control.  相似文献   

9.
A podand containing urea units (L) was found to form interlocked structures with 2,5-dihexylamide imidazolium salts (3·X), 2,5-dihexyl imidazolium salts (4·X), and 2,5-dihexyl benzoimidazolium salts (5·X), where X=Cl, Br, and PF6 using anions as templates. The binding ability of L and guest molecules was evaluated by 1H NMR titrations in CDCl3. It was found that L could form complexes with guest molecules in the following order, 3·X > 5·X > 4·X. Stabilities of the complexes also depended on shape of the templated anions: Cl>Br?PF6. Hydrogen bonding and π-π stacking interactions played an important role in the self-assembling of these interlocked molecules.  相似文献   

10.
Four cyclometalated Pt(II) complexes, i.e., [(L2)PtCl] (1b), [(L3)PtCl] (1c), [(L2)PtCCC6H5] (2b) and [(L3)PtCCC6H5] (2c) (HL2 = 4-[p-(N-butyl-N-phenyl)anilino]-6-phenyl-2,2′-bipyridine and HL3 = 4-[p-(N,N′-dibutyl-N′-phenyl)phenylene-diamino]-phenyl-6-phenyl-2,2′-bipyridine), have been synthesized and verified by 1H NMR, 13C NMR and X-ray crystallography. Unlike previously reported complexes [(L1)PtCl] (1a) and [(L1)PtCCC6H5] (2a) (HL1 = 4,6-diphenyl-2,2′-bipyridine), intense and continuous absorption bands in the region of 300-500 nm with strong metal-to-ligand charge transfer (1MLCT) (dπ(Pt) → π(L)) transitions (ε ∼ 2 × 104 dm3 mol−1 cm−1) at 449-467 nm were observed in the UV-Vis absorption spectra of complexes 1b, 1c, 2b and 2c. Meanwhile, with the introduction of electron-donating arylamino groups in the ligands of 1a and 2a, complexes 1b and 2b display stronger phosphorescence in CH2Cl2 solutions at room temperature with bathochromically shifted emission maxima at 595 and 600 nm, relatively higher quantum yields of 0.11 and 0.26, and much longer lifetimes of 8.4 and 4.5 μs, respectively. An electrochromic film of 1b-based polymer was obtained on Pt or ITO electrode surface, which suggests an efficient oxidative polymerization behavior. An orange multilayer organic light-emitting diode with 1b as phosphorescent dopant was fabricated, achieving a maximum current efficiency of 11.3 cd A−1 and a maximum external efficiency of 5.7%. The luminescent properties of complexes 1c and 2c are dependent on pH value and solvent polarity, which is attributed to the protonation of arylamino units in the C^N^N cyclometalating ligands.  相似文献   

11.
A series of Ag(I) complexes containing the 2-amino-5-halopyrimidine ligands have been synthesized and their structures characterized by X-ray crystallography. The isomorphous complexes Ag(L-Cl)2(CF3SO3) (L-Cl = 2-amino-5-chloropyrimidine), 1, and Ag(L-Br)2(CF3SO3) (L-Br = 2-amino-5-bromopyrimidine), 2, are mononuclear, while [Ag(L-Br)(CF3SO3)]6·6C4H10O, 3, and [Ag(L-I)(CF3SO3)]6 (L-I = 2-amino-5-iodopyrimidine), 4, show cyclic self-assembly of six Ag(Ι) atoms and six L-X ligands, resulting in 24-membered metallocycles. The complex [Ag(L-I)(CF3SO3)], 5, forms 1D zigzag chains which are linked through C-I?Ag and Ag?O interactions to form a 3D structure. The tetranuclear complexes [Ag(L-X)(NO3)]4 [X = Cl, 6; Br, 7] form 16-membered metallocycles, while [Ag(L-X)(ClO4)] [X = Cl, 8; Br, 9] exhibit helical chains. The different structure of 5 from 1 and 2 appears to be due to the stronger nucleophilic character of the iodine atom. In these complexes, the relatively smaller NO3 anions lead to the formation of tetranuclear metallocycles and the larger CF3SO3 anions support the hexanuclear metallocycles, whereas the ClO4 anions induce the helical chains.  相似文献   

12.
Three new copper(II) complexes [CuL1]2(ClO4)2 (1), [CuL2]ClO4 (2) and [CuL3] (3) with three Schiff base ligands [HL1 = 1-phenyl-3-{3-[(pyridin-2-ylmethylene)-amino]-propylimino}-butan-1-one, HL2 = 1-phenyl-3-[3-(1-pyridin-2-yl-ethylideneamino)-propylimino]-butan-1-one and H2L3 = 3-[3-(1-methyl-3-oxo-3-phenyl-propylideneamino)-propylimino]-1-phenyl-butan-1-one] have been synthesized and structurally characterized by X-ray crystallography. The mono-negative tetradentate asymmetric Schiff base ligands (L1) and (L2) are chelated in complexes 1 and 2 to form square planar copper(II) complexes. In complex 1, the two units are associated weakly through ketonic oxygen of benzoylacetone fragment to form the dimeric entity. The square planar geometry of complex 3 is unusually distorted towards tetrahedral one. All three complexes exhibit reversible cyclic voltammetric responses in acetonitrile solution corresponding to the CuII/CuI redox process. The E1/2 (−0.47 V versus SCE) of 3 shows significant anodic shift due to the tetrahedral distortion around Cu(II) compare to that of 1 and 2 (−0.82 and −0.87 V versus SCE, respectively).  相似文献   

13.
Complexes of three related 1-azapentadienyl ligands [N(SiMe2R1)C(But)(CH)3SiMe2R], abbreviated as L (R = But, R= Me), L′ (R = Me = R1), and L″ (R = But = R1), are described. The crystalline compounds Sn(L)2 (1), Sn(L′)2 (2), [Sn(L′)(μ-Cl)]2 (3) and [Sn(L″)(μ-Cl)]2 (4) were prepared from SnCl2 and 2 K(L), 2 K(L′), K(L′) and K(L″), respectively, in thf. Treatment of the appropriate lithium 1-azapentadienyl with Si(Cl)Me3 yielded the yellow crystalline Me3Si(L) (5) and the volatile liquid Me3Si(L′) (6) and Me3Si(L″) (7), each being an N,N,C-trisilyldieneamine. The red, crystalline Fe(L)2 (8) and Co(L′)2 (9) were obtained from thf solutions of FeCl2 with 2 Li(L)(tmeda) and CoCl2 with 2 K(L′), respectively. Each of 1-9 gave satisfactory C, H, N analyses; 6 and 7 (GC-MS) and 1, 2, 8 and 9 (MS) showed molecular cations and appropriate fragments (also 3 and 4). The 1H, 13C and 119Sn NMR (1-4) and IR spectra support the assignment of 1-4 as containing Sn-N(SiMe2R1)-C(But)(CH)3SiMe2R moieties and 5-7 as N(SiMe3)(SiMe2R1)C(But)(CH)3SiMe2R molecules; for 1-4 this is confirmed by their X-ray structures. The magnetic moments for 8 (5.56 μB) and 9 (2.75 μB) are remarkably close to the appropriate Fe and Co complex [M{η3-N(SiMe3)C(But)C(H)SiMe3}2]; hence it is proposed that 8 and 9 have similar metal-centred, centrosymmetric, distorted octahedral structures.  相似文献   

14.
The syntheses and structures of a series of metal complexes, namely Cu2Cl4(L1)(DMSO)2·2DMSO (L1 = N,N′-bis(2-pyridinyl)-1,4-benzenedicarboxamide), 1; {[Cu(L2)1.5(DMF)2][ClO4]2·3DMF} (L2 = N,N′-bis(3-pyridinyl)-1,4-benzenedicarboxamide), 2; {[Cd(NO3)2(L3)]·2DMF} (L3 = N,N′-bis-(2-pyrimidinyl)-1,4-benzenedicarboxamide), 3; {[HgBr2(L3)]·H2O}, 4, and {[Na(L3)2][Hg2X5]·2DMF} (X = Br, 5; I, 6) are reported. All the complexes have been characterized by elemental analysis, IR spectra and single crystal X-ray diffraction. Complex 1 is dinuclear and the molecules are interlinked through S?S interactions. In 2, the Cu(II) ions are linked through the L2 ligands to form 1-D ladder-like chains with 60-membered metallocycles, whereas complexes 3 and 4 form 1-D zigzag chains. In complexes 5 and 6, the Na(I) ions are linked by the L3 ligands to form 2-D layer structures in which the [Hg2X5] anions are in the cavities. The L2 ligand acts only as a bridging ligand, while L1 and L3 show both chelating and bridging bonding modes. The L1 ligand in 1 adopts a trans-anti conformation and the L2 ligand in 2 adopts both the cis-syn and trans-anti conformations, whereas the L3 ligands in 36 adopt the trans conformation.  相似文献   

15.
Three complexes of composition [CrL(X)3], where L = 4′-(2-pyridyl)-2,2′:6′,2″-terpyridine and X = Cl, N3, NCS are synthesized. They are characterized by IR, UV–Vis, fluorescence, EPR spectroscopic, and X-ray crystallographic studies. Structural studies reveal that the Cr(III) ion is coordinated by three N atoms of L in a meridional fashion. The three anions occupy the other three coordination sites completing the mer-N3Cl3 (1) and mer-N3N3 (2 and 3), distorted octahedral geometry. The Cr–N2 has a shorter length than the Cr–N1 and Cr–N3 distances and the order Cr–N(NCS) < Cr–N(N3) < Cr–Cl is observed. They exhibit some of the d–d transitions in the visible and intra-ligand transitions in the UV regions. The lowest energy d–d transition follows the trend [CrLCl3] < [CrL(N3)3] < [CrL(NCS)3] consistent with the spectrochemical series. In DMF, they exhibit fluorescence having π → π character. All the complexes show a rhombic splitting as well as zero-field splitting (zfs) in X-band EPR spectra at 77 K.  相似文献   

16.
The reactions of organoantimony chlorides L1,2SbCl21 and 2 ([2,6-(ROCH2)2C6H3], R = Me; L1 and R = t-Bu; L2) with silver salts of selected carboxylic acids resulted to corresponding organoantimony carboxylates L1,2Sb(OOCR′)2, 1a-c (for L1) and 2a-c (for L2), where R′ = CH3 for 1a, 2a; R′ = CHCH2 for 1b, 2b and R′ = CF3 for 1c, 2c. All compounds were characterized by the help of elemental analysis, ESI-MS, 1H and 13C NMR spectroscopy. The solid state structure investigation using single crystal X-ray diffraction techniques (2a, c) and IR spectroscopy revealed significant differences in coordination mode of both O,C,O chelating ligand and carboxylic groups in this set of compounds. The structure of all compounds in solution of non-coordinating solvent (CDCl3) was determined by means of variable temperature 1H, 13C, 19F NMR spectroscopy and IR spectroscopy.  相似文献   

17.
Two new coordination polymers of Robson-type macrocycles, [Cu2L1(μ-ClO4)2] (1) and [Cu2L2(μ-ClO4)2] (2) (where H2L1and H2L2 are the [2+2] condensation products of 2,6-diformyl-4-flurophenol with 1,3-diaminopropane and 2-hydroxy-1,3-diaminopropane, respectively), have been synthesized and characterized. The intriguing feature is that intermolecular perchlorato bridges occur between adjacent copper(II) centers. The cyclic voltammograms of the complexes show that each complex undergoes two pseudo-reversible processes with the half wave potentials, −0.361 V and −0.729 V for 1, and −0.372 V and −0.744 V for 2, respectively. Magnetic susceptibility was measured for 1 and 2 over a temperature range of 2–300 K. The optimized magnetic data were J = −359.6 cm−1, j′ = −30 cm−1 and R = 6.8 × 10−8 for 1 and = −411 cm−1, j′ = −26 cm−1 and R = 2.4 × 10−7 for 2, respectively. The data reveal antiferromagnetic couplings between the copper(II) ions of intra- and intermolecular units.  相似文献   

18.
Ion-selective properties were established for membrane electrodes prepared by using organotin compounds of type (LCNRSnF2)n, (R = n-Bu (I), = Ph (II)) and (LCNSnF3)n (III) (LCN = C6H4(CH2NMe2)-2). Electrodes formulated with the optimized membranes containing the organotin compounds I-III as ionophores and sodium tetraphenylborate (10-30%) exhibited high selectivity for fluoride over other anions. An electrode prepared with ionophore II using dibutyl phthalate as the plasticizer and 15% sodium tetraphenylborate (NaTPB) as anion additive, possesses the best potentiometric response characteristics. It shows a detection limit of 7.9 × 10−7 M with a slope of 62.7 mV decade−1 of activity in buffer solutions of pH 5.5. The interference from other anions is suppressed under this optimized measurement conditions. An entirely non-Hofmeister selectivity sequence (F > CH3COO > Cl > I ∼ Br >ClO4 > NO2 > NO3 > SCN) with remarkable preference towards fluoride is obtained. The influence on the electrode performances by anion additive was studied, and the possible response mechanism was investigated by UV-vis spectra. The electrode has been used for direct determination of fluoride in drinking mineral water with satisfactory results.  相似文献   

19.
We report the use of triorganotin fragments R2L1-2Sn containing N,C,N and O,C,O-ligands L1-2(L1 = C6H3(Me2NCH2)2-2,6, L2 = C6H3(tBuOCH2)2-2,6) on stabilization of both thiol-form in R2L1-2Sn-2-SPy (2-SPy = pyridine-2-thiolate) and thione-form in R2L1-2Sn(mimt) (mimt = 1-methylimidazole-2-thiolate) of the polar groups. Treatment of ionic organotin compounds [Me2L1Sn]+[Cl] (1) and [Ph2L2Sn]+[OTf] (2) with appropriate sodium salts Na-2-SPy and Na(mimt) resulted in the isolation of Me2L1Sn-2-SPy (3), Ph2L2Sn-2-SPy (4), Me2L1Sn(mimt) (5), Ph2L2Sn(mimt) (6). While polar group 2-SPy exists in its thiol-tautomeric form in compounds 3 and 4, the second polar group (mimt) has been stabilized as the thione-tautomeric form by triorganotin fragments R2L1-2Sn in compounds 5 and 6. The products were characterized by 1H, 13C and 119Sn NMR and IR spectroscopy, ESI/MS, elemental analyses and structures of 3, 6 were determined by X-ray diffraction study. The reactivity of compound 4 containing non-coordinated nitrogen atom of 2-SPy polar group towards CuCl and AgNO3 is also reported. The reactions led to isolation of organotin compounds Ph2L2SnCl (7) and Ph2L2SnNO3 (8) as the result of polar group transfer. The mechanism of this reaction has been investigated and compounds Ph3Sn-2-SPy (9) and Ph2L2Sn-4-SPy (10) (4-SPy = pyridine-4-thiolate) have been prepared for this purpose.  相似文献   

20.
The reactions of the polydentate ligand 1,4-bis(4,5-dihydro-2-oxazolyl)benzene (L) with AgX (X = CH3COO, ClO4 and CF3SO3) afforded the complexes [Ag2(L)(CH3COO)2] (1), [Ag2(L)3(ClO4)2] (2), and [Ag(L)(CF3SO3)] (3), whereas the reaction of L with Ag2SO4 in MeOH/H2O system afforded {[Ag2(L)3(H2O)3][SO4] · 9H2O} (4). The EA and IR have been recorded and all the complexes have been structurally characterized by X-ray crystallography, confirming that complexes 14 are two-dimensional coordination polymeric frameworks. The bidentate L ligands in complexes 3 and 4 adopt both the syn and anti conformation and those in 1 and 2 adopt the anti conformation only. The anions CH3CO2 in complex 1 bridge the Ag(I) atoms in η1, η2, μ3-coordination mode forming a 1-D zig-zag –[Ag(CH3COO)]n– chains, while the anions ClO4, CF3SO3 and SO42− in complexes 24 are not coordinated to the Ag(I) atoms, but all of them play an important roles in linking cationic 2-D frameworks into 3-D supramolecular structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号