首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Different methods for the determination of several metals in soils by flame atomic absorption spectrometry (FAAS) were investigated. Different procedures for total dissolution of soil: I – HF+HClO4, H3BO3, HCl digestion (conventional heating), II – HF+HClO4, H3BO3 digestion followed by fusion with LiBO2 (conventional heating) and III – HF+HCl+HNO3, H3BO3 digestion (microwave heating), as well as a leaching procedure with HNO3+HClO4, HCl were tested and compared. For quality assessment, the certified reference material S-1 soil was used. For most of the investigated metals, the best accuracy and precision were achieved when the procedure I or III were used. The developed procedure was applied to the analysis of soil samples from crude oil refinery and dump of petroleum origin wastes regions. Received: 22 Dezember 1997 / Revised: 9 February 1998 / Accepted: 12 February 1998  相似文献   

2.
Different methods for the determination of several metals in soils by flame atomic absorption spectrometry (FAAS) were investigated. Different procedures for total dissolution of soil: I – HF+HClO4, H3BO3, HCl digestion (conventional heating), II – HF+HClO4, H3BO3 digestion followed by fusion with LiBO2 (conventional heating) and III – HF+HCl+HNO3, H3BO3 digestion (microwave heating), as well as a leaching procedure with HNO3+HClO4, HCl were tested and compared. For quality assessment, the certified reference material S-1 soil was used. For most of the investigated metals, the best accuracy and precision were achieved when the procedure I or III were used. The developed procedure was applied to the analysis of soil samples from crude oil refinery and dump of petroleum origin wastes regions.  相似文献   

3.
Five closed-vessel microwave digestion methods were compared for the accurate determination of arsenic and selenium in NIST SRM 1645 River Sediment by flow-injection hydride-generation atomic absorption spectrometric methods. The digestion methods using five different acid mixtures (HNO3/ H2SO4, HNO3/HCl04, HNO3/HCl, HNO3/HCl/HF, HNO3/H2SO4/HClO4) were all found to be reliable for the determination of the analytes. Taking into consideration the safety and suitability for the analysis of other metals, the methods based on the use ofaqua regia are recommended for closed vessel microwave digestion with pressure control. Using the quick digestion program, the presence of up to 10% organic content in soil samples did not adversely affect the closed vessel digestion and did not cause the loss of volatile analytes. After digestion, opening the vessel under an inner pressure of below 345 kPa (50 psi) had no effect on the accuracy of the results. The recommended digestion methods (HNO3/HCl and HNO3/ HCl/HF) for the reliable determination of arsenic and selenium in different sediment samples were demonstrated. The calculated detection limits (3 b ) were less than 0.030 g/g and 0.033 g/g for arsenic and selenium, respectively. All analytical results for arsenic and selenium in SRM 1645 River sediment, NRCC BCSS-1 Marine Sediment and NIES CRM Pond Sediment were within or near the certified and reported ranges, with the exception of selenium in NIES CRM No. 2 Pond Sediment.  相似文献   

4.
Closed-vessel microwave digestion of nine standard reference plant materials (NIST, BCR, IAEA) and a laboratory standard of plant material with different Si contents assisted by HNO3 + H2O2 (procedure A), HNO3 + H2O2 + HF + H3BO3 (procedure B) and HNO3 + H2O2 + HBF4 (procedure C) were used to determine the recovery of 36 elements by ICP-MS: Ag, Al, As, Ba, Be, Bi, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, In, La, Li, Mn, Mo, Nd, Ni, Pb, Pr, Rb, Sb, Se, Sn, Sr, Th, Tl, U, V, W, Y, Zn. Additions of HF + H3BO3 and HBF4 in procedures B and C exceeded by 10% (B1, C1) and 100% (B2, C2) the equivalent concentrations of Si in the samples determined by ICP-OES. Most recoveries of certified elements (e.g., Al*, Cu, Mo*, Rb*, Sb*, Th) decreased significantly (*p ≤ 0.05) with increasing Si content in plant reference materials digested by procedure A, while the recoveries from procedures B and C decreased insignificantly only for Mo and Sb. Digestions B and C gave significantly higher recoveries of Al, Sb, W and REEs, which were tighter to the reference values of these elements. A similar effect was found for Cu, Fe, Li, Ni, Sn, Th, Tl, V, Zn, Ba, Rb and Sr recoveries in samples with Si contents exceeding 2000 μg g−1. If the Si content in plant samples is less than 10 mg g−1, digestion of 0.5 g of plant samples through 0.05 mL of HF and 0.5 mL of 4% H3BO3 or 0.1 mL of HBF4 is recommended to get satisfactory results for most of the elements. For materials with Si content exceeding 10 mg g−1 the weight of the sample for digestion should be reduced to 0.25 g. However, the operation of potential interferences should be taken into account and eliminated through correction equations and adequate dilution of the samples.  相似文献   

5.
A robust, accurate and sensitive analytical procedure for the determination of Se in plant and peat samples by hydride generation-atomic fluorescence spectrometry (HG-AFS) was developed. Aliquots (200 mg) of dried samples were digested with 3 mL nitric acid and 0.5 mL hydrogen peroxide in closed, pressurized PTFE vessels in a microwave oven at 220 °C. Addition of HBF4 or HF to the digestion mixture was not required because experiments demonstrated that Se was not hosted in the silicate fraction of the investigated sample matrices. Selenium(VI) was directly reduced to Se(IV) in the undiluted digestion solutions after addition of 3.8 mL of 4 M HCl in a microwave oven at 103 °C for 3 min. Other reduction reagents, such as hydroxylamine hydrochloride or urea, were not necessary to cope with potential interferences from nitrogen oxides that could hamper the reliable determination of Se by HG-AFS. Optimum hydride generation of Se was achieved by using 0.9% NaBH4 and 4.5 M HCl. A solution detection limit of 11 ng L−1 was obtained under the optimized experimental conditions which corresponds to a method detection limit of 2.8 ng g−1 in solid peat and plant materials. The precision of replicate measurements was better than 3% at Se concentrations of 50 ng L−1. The analytical procedure was critically evaluated by analysing two certified plant reference materials (SRM 1515 Apple Leaves and SRM 1547 Peach Leaves) as well as three peat reference materials. Excellent agreement between the experimental values ranging from 50 ng g−1 to ∼2 μg g−1 and the certified concentrations was obtained.  相似文献   

6.
Mariet C  Belhadj O  Leroy S  Carrot F  Métrich N 《Talanta》2008,77(1):445-450
In order to implement a simpler, less expensive and more safe sample dissolution procedure, we have substituted the HF-HClO4 mixture by NH4F. By testing three certified reference materials, lichen 336, basalt BE-N, soil 7, it was found that the three-reagents digestion without HF and HClO4 (HNO3 + H2O2 + NH4F was used) was very effective for the pretreatment of ICP-MS measurement. The comparison was based on the measurement results and their uncertainties. All are reference material for amount contents of different trace elements. The accuracy and precision of the developed method were tested by replicate analyses of reference samples of established element contents. The accuracy of the data as well as detection limits (LODs) vary among elements but are usually very good (accuracy better than 8%, LODs usually below 1 μg/g in solids). ICP-MS capabilities enable us to determine routinely 13 and 16 minor and trace elements in basalt and soil.  相似文献   

7.
The microwave-assisted acid-digestion for the determination of metals in coal by ICP-AES was investigated, especially focusing on the necessity of adding HF. By testing five certified reference materials, BCR-180, BCR-040, NIST-1632b, NIST-1632c, and SARM-20, it was found that the two-stage digestion without HF (HNO3 + H2O2 was used) was very effective for the pretreatment of ICP-AES measurement. Both major metals (Al, Ca, Fe, and Mg) and minor or trace metals (Co, Cr, Cu, Mn, Ni, Pb, and Zn) in coal gave good recoveries for their certified or reference values. The possibility of ‘HF-memory effect’ was cancelled by the use of a set of vessels which had been never contacted with HF. Twenty-four Japanese standard coals (SS coals) were analyzed by the present method, and the concentrations of major metals measured by the present method provided very high accordance with those from the authentic JIS (Japanese Industrial Standard) method.  相似文献   

8.
The present work evaluates the influence of vessel cooling simultaneously to microwave-assisted digestion performed in a closed system with diluted HNO3 under O2 pressure. The effect of outside air flow-rates (60–190 m3 h−1) used for cooling of digestion vessels was evaluated. An improvement in digestion efficiency caused by the reduction of HNO3 partial pressure was observed when using higher air flow-rate (190 m3 h−1), decreasing the residual carbon content for whole milk powder from 21.7 to 9.3% (lowest and highest air flow-rate, respectively). The use of high air flow-rate outside the digestion vessel resulted in a higher temperature gradient between liquid and gas phases inside the digestion vessel and improved the efficiency of sample digestion. Since a more pronounced temperature gradient was obtained, it contributed for increasing the condensation rate and thus allowed a reduction in the HNO3 partial pressure of the digestion vessel, which improved the regeneration of HNO3. An air flow-rate of 190 m3 h−1 was selected for digestion of animal fat, bovine liver, ground soybean, non fat milk powder, oregano leaves, potato starch and whole milk powder samples, and a standard reference material of apple leaves (NIST 1515), bovine liver (NIST 1577) and whole milk powder (NIST 8435) for further metals determination by inductively coupled plasma atomic emission spectroscopy (ICP-OES). Results were in agreement with certified values and no interferences caused by matrix effects during the determination step were observed.  相似文献   

9.
Two digestion procedures have been tested on nut samples for application in the determination of essential (Cr, Cu, Fe, Mg, Mn, Zn) and non-essential (Al, Ba, Cd, Pb) elements by inductively coupled plasma-optical emission spectrometry (ICP-OES). These included wet digestions with HNO3/H2SO4 and HNO3/H2SO4/H2O2. The later one is recommended for better analytes recoveries (relative error < 11%). Two calibrations (aqueous standard and standard addition) procedures were studied and proved that standard addition was preferable for all analytes. Experimental designs for seven factors (HNO3, H2SO4 and H2O2 volumes, digestion time, pre-digestion time, temperature of the hot plate and sample weight) were used for optimization of sample digestion procedures. For this purpose Plackett-Burman fractional factorial design, which involve eight experiments was adopted. The factors HNO3 and H2O2 volume, and the digestion time were found to be the most important parameters. The instrumental conditions were also optimized (using peanut matrix rather than aqueous standard solutions) considering radio-frequency (rf) incident power, nebulizer argon gas flow rate and sample uptake flow rate. The analytical performance, such as limits of detection (LOD < 0.74 μg g−1), precision of the overall procedures (relative standard deviation between 2.0 and 8.2%) and accuracy (relative errors between 0.4 and 11%) were assessed statistically to evaluate the developed analytical procedures. The good agreement between measured and certified values for all analytes (relative error <11%) with respect to IAEA-331 (spinach leaves) and IAEA-359 (cabbage) indicates that the developed analytical method is well suited for further studies on the fate of major elements in nuts and possibly similar matrices.  相似文献   

10.
A new synthetic method of szaibelyite (2MgO·B2O3·H2O) has been reported. The enthalpy of solution of 2MgO·B2O3·H2O in 2.9842 mol dm−3 HCl (aq) was determined. From a combination of this result with measured enthalpies of solution of H3BO3 in 2.9842 mol dm−3 HCl (aq) and of MgO in (HCl+H3BO3) solution, together with the standard molar enthalpies of formation of MgO (s), H3BO3 (s), and H2O (l), the standard molar enthalpy of formation of −(2884.36±1.82) kJ mol−1 of 2MgO·B2O3·H2O was obtained.  相似文献   

11.
A low pressure microwave assisted vapor phase dissolution procedure for silicon nitride and volatilization of in situ generated SiF4 has been developed using H2SO4, HF and HNO3 for the determination of trace impurities present in silicon nitride. Sample was taken in minimum amount (0.5 mL for 100 mg) of H2SO4 and treated with vapors generated from HF and HNO3 mixture in presence of microwaves in a closed container. An 80 psi pressure with ramp and hold times of 30 min and 60 min respectively, operated twice, resulted in 99.9% volatilization of Si. Matrix free solutions were analyzed for impurities using DRC-ICP-MS. The recoveries of Cr, Mn, Fe, Ni, Co, Cu, Zn, Sr, Y, Cd, Ba and Pb were between 80 and 100% after volatilization of Si. The blanks were in lower ng g−1 with method detection limits in lower ng g−1 to sub ng g−1 range. The method was applied for the analysis of two silicon nitride samples.  相似文献   

12.
In this work, a sample preparation method based on ultrasound-assisted extraction of trace metals from a variety of biological and environmental matrices using a cup-horn sonoreactor is described. Diluted acids (HNO3, HCl and HF) and oxidants (H2O2) were tried for extraction, the extracts being directly analyzed by electrothermal-atomic absorption spectrometry. The cup-horn sonoreactor combines the advantages of probe and bath sonicators, allowing a variety of conditions to be used for metal extraction from troublesome matrices. This system facilitates the use of HF to destroy the silicate lattice, application of simultaneous treatments of up to six samples and short treatment times. Quantitative metal recoveries are achieved from different matrices (animal and vegetal tissues, soil, sediment, fly ash, sewage sludge) under a set of extraction conditions ranging from the use of 3 min sonication time and 3% volume/volume HNO3 for some animal tissues to 40 min sonication time along with 5% volume/volume HNO3 + 20% volume/volume HF for sediment. Vegetal matter required the use of 5% volume/volume HNO3 + 5% volume/volume HF for extraction of some elements.  相似文献   

13.
A robust microwave-assisted acid digestion procedure followed by inductively coupled plasma-mass spectrometry (ICP-MS) was developed to quantify rare earth elements (REEs) in fluidized-bed catalytic cracking (FCC) catalysts and atmospheric fine particulate matter (PM2.5). High temperature (200 °C), high pressure (200 psig), acid digestion (HNO3, HF and H3BO3) with 20 min dwell time effectively solubilized REEs from six fresh catalysts, a spent catalyst and PM2.5. This method was also employed to measure 27 non-REEs including Na, Mg, Al, Si, K, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Zr, Mo, Cd, Cs, Ba, Pb and U. Complete extraction of several REEs (Y, La, Ce, Pr, Nd, Tb, Dy and Er) required HF indicating that they were closely associated with the aluminosilicate structure of the zeolite FCC catalysts. Internal standardization using 115In quantitatively corrected non-spectral interferences in the catalyst digestate matrix. Inter-laboratory comparison using ICP-optical emission spectroscopy (ICP-OES) and instrumental neutron activation analysis (INAA) demonstrated the applicability of the newly developed analytical method for accurate analysis of REEs in FCC catalysts. The method developed for FCC catalysts was also successfully implemented to measure trace to ultra-trace concentrations of La, Ce, Pr, Nd, Sm, Gd, Eu and Dy in ambient PM2.5 in an industrial area of Houston, TX.  相似文献   

14.
A simple and reliable multi-element procedure for determination of essential (Cr, Cu, Fe, Mg, Mn, Zn) and toxic (Al, Cd, Pb) elements in legumes by inductively coupled plasma-optical emission spectrometry (ICP-OES) was developed. In this contribution, four different digestion procedures were thoroughly investigated and accurately evaluated with respect to their affect on the analysis of legumes. These included wet digestion with HNO3/H2SO4 and HNO3/H2SO4/H2O2, and dry ashing with Mg(NO3)2 and Mg(NO3)2/HNO3. Two calibrations (aqueous standard and standard addition) procedures were studied, and proved that standard addition was preferable for all analytes. ICP-OES operating parameters, such as radio-frequency (RF) incident power, sample uptake flow rate and nebulizer argon gas flow rate were optimized. The precision as repeatability, expressed as relative standard deviation (R.S.D.) for aqueous standard containing 250 μg l−1 of each analyte was in the range1.5-8.0%. The accuracy, expressed as relative error was generally varied in the range of 0.5-10% for all analytes, while the quantification limits were lower than 2.5 μg g−1. Although, acceptable results were obtained from all developed procedures, wet digestion method with HNO3/H2SO4/H2O2 is recommended for better recovery. The good agreement between measured and certified concentrations with respect to IAEA-331 and IAEA-359 (CRM's supplied by IAEA, International Atomic Energy Agency) indicates that the developed analytical method is well suited for determination of toxic and nutrient elements in legumes and possibly similar matrices.  相似文献   

15.
An on-line automated flow injection system with microwave-assisted sample digestion was used to perform silicate rock dissolution in acid medium for iron determination. For this purpose, a continuous flow system was built up by using an automatic flow injection analysis (FIA) system coupled to a flame atomic absorption spectrometer (FAAS), including a focused microwave oven unit. Inside the microwave cavity was inserted a polytetrafluoroethylene (PTFE) reactor coil (300 cm length and 0.8 mm i.d.) where the dissolution takes place. Chemical and flow variables as well as iron determination parameters were studied. In the flow system, a slurry of the rock sample (50 mg in 200 ml of acid mixture HF+HCl+HNO3) is pumped through the reaction coil and the microwaves are turned on. After elapsed the time required to complete the sample dissolution, the mixture is pumped again in order to fill the sampling loop (500 μl). Then, by changing the valve position, a water carrier stream pushes the sample solution through the flame atomic absorption spectrometer nebulizer. To achieve an accurate determination of the rock certified materials, the slurry sample was irradiated during 210 s at 90 W power. Working in that condition, a detection limit of 0.80 μg ml−1 (which corresponds to an Fe2O3 content of 0.46%) and an analytical throughput of 10 h−1 were achieved. The relative standard deviation (R.S.D.) of the method varied between 1 and 11% when applied to the rock certified materials.  相似文献   

16.
The efficiency of four methods of digestion was evaluated for trace metal analysis of pork meat and carp fish tissues. Two methods of dry and two methods of wet ashing were compared in terms of calculated variances. Mixtures of HCl+HNO3 were applied for wet ashing of the samples at 100 °C, while dry ashing with or without H2SO4 at 450 °C were the alternative methods. The digests were subsequently analysed for Pb, Cd, Cu and Zn by graphite furnace atomic absorption spectrometry. Analysis of variance and Student's t-test were performed separately for meat and fish analytical results. Wet digestion with a (1+1) mixture of HCl+HNO3 has given better recovery and repeatability for almost all metals than a (9+1) mixture of HCl+HNO3. Also between the dry ashing methods, the use of H2SO4 has given better results than ashing of the tissues without H2SO4.  相似文献   

17.
A microwave acid digestion method prior to the determination of210Pb and210Po in sediments and soils is described. It involves an acid (HNO3, HCl, HF and H3BO3 mixture) digestion with microwave heating in closed vessels at high pressures. Analyses carried out for various reference materials showed that the results were statistically equal to certified values and reproducibility was also assured. The advantage of the microwave technique compared to the traditional leaching procedures is that the solid materials are completely dissolved and, therefore, ca. 100% efficiency is achieved in the extraction of210Po and210Pb, even though a fraction is associated to the silica net. Moreover, time of analysis is drastically reduced, as are the risks associated to vapour inhalation and material corrosion.  相似文献   

18.
The determination of chromium (52Cr), iron (56Fe) and selenium (80Se) isotopes in foodstuffs of animal origin has been performed by collision cell technology (CCT) mode using an inductively coupled plasma mass spectrometry (ICP-MS) as detector after closed vessel microwave digestion. To significantly decrease the argon-based interferences at mass to charge ratios (m/z): 52 (40Ar12C), 56 (40Ar16O) and 80 (40Ar40Ar), the gas-flow rates of a helium and hydrogen mixture used in the hexapole collision cell were optimised to 1.5 ml min−1 H2 and 0.5 ml min−1 He and the quadrupole bias was adjusted daily between −2 and −15 mV. Limits of quantification (LOQ) of 0.025, 0.086 and 0.041 mg kg−1 for Cr, Fe and Se, respectively, in 6% HNO3 were estimated under optimized CCT conditions. These LOQ were improved by a factor of approximately 10 for each element compared to standard mode.Precision under repeatability, intermediate precision reproducibility and trueness have been tested on nine different certified reference materials in foodstuffs of animal origin and on an external proficiency testing scheme. The results obtained for chromium, iron and selenium were in all cases in good agreement with the certified values and trueness was improved, compared to those obtained in standard mode.  相似文献   

19.
Marin B  Chopin EI  Jupinet B  Gauthier D 《Talanta》2008,77(1):282-288
The aim of the study was to determine total trace (Cd, Co, Cr, Cu, Mn, Pb and Zn) and major (Al and Fe) element concentrations in calcareous soils using microwave-assisted digestion procedures. The literature showing lack of consensus regarding digestion procedures and unsatisfying recoveries for calcareous materials, four procedures using various acid combinations (HCl, HNO3, H2O2, HF) and volumes were tested using a certified reference material (CRM 141R) and natural calcareous soil samples. Digests were analysed by inductively coupled plasma-atomic emission spectrometry (ICP-AES). Repeatability (R.S.D. <5%) and recoveries (82-116%) showed that the procedures were precise and accurate for most elements. Five calcareous soil samples from a Champagne vineyard plot were, then, subjected to these procedures. In calcareous materials, the presence of HF resulted in Al being severely underestimated (recovery <5%) and Co overestimated (recovery >124%) due to complex formation or spectrochemical interferences, respectively. As digestion was not significantly influenced by the addition of H2O2, the procedure corresponding to Aqua regia (HCl-HNO3) appeared as the best compromise and was selected for further multielemental environmental studies on calcareous materials, even if the absence of HF could lead to incomplete digestion of accessory silicate minerals. Results for a vineyard plot showed that the soils were contaminated (3.65 mg kg−1 Cd, 67 mg kg−1 Cr, 278 mg kg−1 Cu, 143 mg kg−1 Pb and 400 mg kg−1 Zn) as a consequence of urban waste and copper-treatment applications.  相似文献   

20.
Two pure strontium borates SrB2O4·4H2O and SrB2O4 have been synthesized and characterized by means of chemical analysis and XRD, FT-IR, DTA-TG techniques. The molar enthalpies of solution of SrB2O4·4H2O and SrB2O4 in 1 mol dm−3 HCl(aq) were measured to be −(9.92 ± 0.20) kJ mol−1 and −(81.27 ± 0.30) kJ mol−1, respectively. The molar enthalpy of solution of Sr(OH)2·8H2O in (HCl + H3BO3)(aq) were determined to be −(51.69 ± 0.15) kJ mol−1. With the use of the enthalpy of solution of H3BO3 in 1 mol dm−3 HCl(aq), and the standard molar enthalpies of formation for Sr(OH)2·8H2O(s), H3BO3(s), and H2O(l), the standard molar enthalpies of formation of −(3253.1 ± 1.7) kJ mol−1 for SrB2O4·4H2O, and of −(2038.4 ± 1.7) kJ mol−1 for SrB2O4 were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号