首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Single-phase shear thickening fluids (STFs) have been extensively investigated in body protective applications. However, researchers do not have long-standing past experience of multi-phase STFs in protection. In the present work, multi-phase STFs were fabricated adding different amount of silicon carbide (SiC) additives into silica and polyethylene glycol (PEG) based suspensions. The thickening rheology of multi-phase STFs was investigated through rheological measurements. Ballistic impacts on multi-phase STF treated fabrics were carried out using lead core bullets with the impact speed of ∼330 m/s. Based on the results, multi-phase STFs improve the ballistic performance of high performance fabrics in comparison to single-phase STFs however, the mass efficiency of fabrics has a loss of performance for high velocity impact conditions.  相似文献   

2.
SiO2/聚乙二醇非牛顿流体流变性能研究   总被引:3,自引:0,他引:3  
利用应力控制流变仪考察了SiO2/聚乙二醇分散体系稳态和动态的流变性能. 实验结果表明, 该体系具有剪切变稀和可逆的剪切增稠现象. 稳态应力实验中, 当应力较小时, 体系具有剪切变稀现象, 而在剪切应力(σ)大于临界剪切应力(σcs, σcs=9.99 Pa)后, 体系粘度急剧增大. 在动态实验中, 剪切应力小于临界剪切应力(σco, σco=15.85 Pa)时, 储能模量G′减小, 耗能模量G″与复合粘度η*基本不变, 但σ>15.85 Pa后, G′、G″及η*同步增大, 且在所研究的应力范围内, G″均大于G′. 同时还考察了测试频率、分散相含量以及分散介质平均分子量的差别对流变性的影响. σco随测试频率的增大而变大; SiO2质量分数越大, σco基本不变, 但增稠现象变得更明显; 与平均分子量小的PEG200体系相比, 平均分子量大的PEG400体系, σco并未发生改变, 但在增稠之前体系的粘度较低, 增稠之后体系粘度增大的幅度较大.  相似文献   

3.
The monodisperse polystyrene (PS) microspheres were prepared by dispersion polymerization. The rheological properties of shear thickening fluid (STF) based on PS microspheres dispersing in polyethylene glycol with different concentrations were studied through the steady and oscillatory shear at different temperatures, respectively. All suspensions successively present the first shear thinning, the shear thickening, and the second shear thinning. The experimental results indicate that the shear thickening behavior of STF is controlled by the concentration of PS microspheres and temperature, as changed from continuous shear thickening (CST) to discontinuous shear thickening (DST) with increasing solid content or decreasing temperature. The STF is affected by shear rate, temperature, and the viscosity of the dispersed medium, and it is reversible absolutely and presents transient response ability. Both CST and DST behave as dilatancy. The PS microsphere aggregations formed under shear stress may result in the shear thickening in STFs.  相似文献   

4.
In this work, the influence of cellulose nanofibers (CNFs) on the rheological behavior of silica-based shear-thickening fluid (STF) is investigated. CNFs of 150–200 nm in diameter were extracted from cotton fibers using a supermasscolloider. CNF-reinforced STF of different concentrations (0.1–0.3 wt.%) was prepared via an ultrasonication technique. The presence of CNFs and their interaction with the silica nanoparticles in the STF were analyzed using SEM and FTIR. The addition of a minute quantity of CNF to the STF (0.3% CNF-reinforced STF) caused a marked increase in the peak viscosity, from 36.8 (unmodified STF) to 139.0 Pa s (0.2% CNF-reinforced STF), and a concomitant decrease in the critical shear rate from 33.45 to 14.8 s?1 . The presence of a large number of hydroxyl groups on the CNFs enhanced their interaction with the nanoparticles via hydrogen bonding, which induced shear thickening. The mechanism of the interaction between silica nanoparticles and CNF was also demonstrated. Oscillatory dynamic rheological analysis showed that the addition of even a small amount of CNF led to higher elastic behavior in the system at lower shear rates. In contrast, a more viscous nature was demonstrated at higher angular frequencies. As the concentration of  nanofibers in the STFs increased, the crossover point between storage and loss modulus shifted to higher angular frequencies, implying stronger interaction between the constituents of the STF. The dynamic viscosity profile of all samples also exhibited shear-thickening behavior.  相似文献   

5.
Two types of precipitated silica powders modified by poly (dimethylsiloxane) (PDMS) were suspended in benzyl alcohol and their rheological properties were investigated as a function of silica volume fraction, φ. The suspensions were classified into sol, pre-gel, and gel states based on the increase in φ. An increase in the degree of surface modification by PDMS caused gelation at higher φ. Plots of apparent shear viscosity against shear rate in the sol and pre-gel states of highly modified silica suspensions showed weak shear thickening behavior, while the same plots for silica suspensions with a low modification level exhibited shear thinning behavior. The dynamic moduli of hydrophobic suspensions in the pre-gel and gel states were dependent on the surface modification: the storage modulus G′ was larger than the loss modulus G″ in the linear region and these moduli increased with increasing φ, irrespective of the silica powder. The linear region of the φ range for the precipitated silica suspensions was wider than that for the fumed silica powders modified by PDMS suspended in benzyl alcohol, while the G′ value in the linear region for the precipitated silica suspensions was less than those for the fumed silica suspensions.  相似文献   

6.
The shear thinning and shear thickening rheological properties of PCC/PEG suspension were investigated with the increase of oscillatory amplitude stress at different constant frequencies. The results show that the complex viscosity was initially independent of stress amplitude and obvious shear thinning occurred, then dramatic shear thickening took place after reaching the minimum viscosity. Typically, in a constant frequency of 5 rad/s, the elastic modulus, viscous modulus, and tanδ (δ is the out-of-phase angle) vs. the stress amplitude was investigated. It is found that the elastic modulus initially appeared to be independent of stress amplitude and then exhibited a rapid decrease, but the viscous modulus was independent of amplitude stress at lower amplitude stress. After reaching the minimum value the viscous modulus showed a rapid increase. On the other hand, tanδ increased from 0.6 to 92, which indicates that the transition from elastic to viscous had taken place and tanδ showed a steep increase when shear thickening occurred. Lissajous plots are shown for the dissipated energy vs. different maximum stress amplitude in the shear thinning and shear thickening regions. The relationship of dissipated energy vs. maximum stress amplitude was determined, which follows a power law. In the shear thinning region the exponent was 1.91, but it steeply increases to 3.97 in the shear thickening region.  相似文献   

7.
二氧化硅分散体系在应力剪切过程中粘弹性及能耗研究   总被引:3,自引:0,他引:3  
通过动态应力剪切研究了以乙二醇、丙二醇和丁二醇为分散介质的雾化二氧化硅分散体系的粘弹性以及能耗. 研究发现, 随着应力的增大, 体系都经历了线性粘弹区、剪切变稀区以及剪切增稠区. 在线性粘弹区, 储能模量(G′)、耗能模量(G′′)随着应力(σ)的增大保持不变;在剪切变稀区, G′随着σ的增大而减小, 且乙二醇、丙二醇、丁二醇分散体系的减小幅度依次递减, 而G′′基本保持不变;在剪切增稠区, G′、G′′都随着σ的增大而增大. 在所研究的应力范围内, G′′都大于G′, 体系主要体现粘性, 消耗能量为主. 同时还发现在低剪切应力区, 体系所消耗的能量(Ed)都随着最大应变(γ0)成二次方关系增长, 而在剪切增稠区, 当n=2.79、4.93、4.88时, EG/SiO2、PG/SiO2、BG/SiO2的Ed分别随γ0以指数关系增长.  相似文献   

8.
贺爱华 《高分子科学》2016,34(2):174-184
The effects of weight-average molecular(Mw), molecular weight distribution(MWD), and isotacticity on the linear viscoelastic behavior of polybutene-1 melts are studied. It is observed that the linear viscoelastic region becomes slightly narrower with increasing frequency. In frequency sweeps, the transition of the polymer melts flow from Newtonian flow to power-law flow can be observed. The melts with higher Mw and/or broader MWD, as well as higher isotacticity exhibit higher complex viscosity, zero shear viscosity, viscoelasticity moduli, relaxation modulus, broader transition zone, while lower critical shear rate, non-Newtonian index, and the frequency at which elasticity begins to play an important role. The relationship of zero shear viscosity on Mw has been established, which agrees with the classical power law. Furthermore, it is found that the cross-over frequency decreases with increasing Mw and the cross-over modulus increases with narrowing MWD.  相似文献   

9.
Shear thickening fluids (STFs) based on additives with different concentrations and molec-ular chain lengths were investigated. STF samples were prepared with silica and additive dispersed in polyethylene glycol (PEG) 400, where three types of additives with different molecular chain lengths of PEG4000, PEG6000, and PEG10000 were used. For PEG10000, different concentrations, including 0, 1%, 3%, and 5%, were selected to study the influences of additive concentrations. Rheological properties of the samples were measured with a rheometer. The results show that the shear thickening effect was significantly enhanced with the increase of the concentration and the molecular chain length of additives. The mech-anism of enhancement was quantitatively explained with the formation of large particles clusters.  相似文献   

10.
Highly concentrated colloidal suspensions exhibit a discontinuous shear-thickening behaviour. The transition from a low to a high viscosity state is associated to a large energy dissipation. This effect could find applications in structural damping while the viscosity increase brings added stiffness. In the present work, highly concentrated suspensions of monodisperse spherical silica particles in polyethylene glycol were selected for their strong thickening at low critical shear rates. Their damping properties were characterized by measuring the energy dissipated per cycle at low frequency (below 2 Hz) during oscillatory tests using a rheometer. The influence of parameters such as particle concentration, size and frequency was investigated. Damping was found to overcome that of benchmark elastomeric materials only in high frequencies and high strain domains.  相似文献   

11.
以三嵌段共聚物聚氧乙烯-聚氧丙烯-聚氧乙烯(PEO-PPO-PEO,P123)为模板剂,采用溶胶-凝胶法合成了介孔SiO_2-P123复合物,经煅烧除去P123得到不同长径比的棒状介孔SiO_2粒子,将其分散于聚乙二醇(PEG)中制成剪切增稠流体(STF),利用旋转流变仪对STF的流变性能进行了表征。结果表明:在稳态条件下,STF的剪切增稠效应随介孔SiO_2质量分数的增加而增强,随介孔SiO_2粒子长径比的增加而减弱;在动态条件下,STF的剪切增稠效应随介孔SiO_2质量分数的增加而减弱,随介孔SiO_2粒子长径比的增加而增强。  相似文献   

12.
The effect of polymer–filler interaction on solvent swelling and dynamic mechanical properties of the sol–gel derived acrylic rubber (ACM)/silica, epoxidized natural rubber (ENR)/silica, and poly (vinyl alcohol) (PVA)/silica hybrid nanocomposites has been described for the first time. Tetraethoxysilane (TEOS) at three different concentrations (10, 30, and 50 wt %) was used as the precursor for in situ silica generation. Equilibrium swelling of the hybrid nanocomposites in respective solvents at ambient condition showed highest volume fraction of the polymer in the swollen gel in PVA/silica system and least in ACM/silica, with ENR/silica recording an intermediate value. The Kraus constant (C) also followed a similar trend. In dynamic mechanical analysis, the storage modulus dropped at higher strain (>1%), which indicated disengagement of polymer segments from the filler surfaces. This drop was maximum in ACM/silica, intermediate in ENR/silica, and minimum in PVA/silica, both at 50 and 70 °C. The drop in modulus with theoretical volume fraction of silica (ϕ) was interpreted with the help of a Power law model ΔE′ = a1ϕ, where a1 was a constant and b1 was primarily a filler attachment parameter. Strain dependence of loss modulus was observed in ACM/silica hybrid nanocomposites, while ENR/silica and PVA/silica nanocomposites showed almost strain‐independent behavior. The storage modulus showed sharp increase with increasing frequency in ACM/silica system, while that was lower in both ENR/silica (at higher frequency) and PVA/silica systems (in the entire frequency spectrum). The increase in modulus with ϕ also followed similar model ΔE′ = a2ϕ proposed in the strain sweep mode. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2399–2412, 2005  相似文献   

13.
Rheology and viscoelastic behavior of polystyrene (PS)/silica microcomposites and nanocomposites were studied. The apparent viscosity, transient shear stress growth after startup shear flow and stress relaxation after cessation of flow at various shear rates, the complex dynamic viscosity, the storage and loss moduli at small and large strain amplitudes and various frequencies were performed. The effect of size, shape and volume concentration of silica was discussed. The maximum volume concentration, corresponding to the concentration at which the relative viscosity of mixtures goes to infinity, with respect to the hydrodynamic contribution of the particles and to polymer-filler interactions was obtained. The difference between the yield stress and residual stress is shown. The domain of equivalence between the apparent viscosity as a function of the shear rate in steady state flow and the complex dynamic viscosity as a function of the strain rate amplitude in highly nonlinear region of oscillatory flow was established. The viscoelastic behavior was interpreted based on the morphology of microcomposites and nanocomposites observed by SEM.  相似文献   

14.
In the present work, the influence of porosity and boron on shear thickening behavior of hybrid mesoporous silica has been studied. Three different levels of boron modification were performed by varying the molar composition of boric acid viz., 1.5 mmol, 2.5 mmol, and 3.5 mmol in a co-condensation approach. The incorporation of boron in mesoporous silica network was confirmed by various techniques such as Fourier transform infra-red (FTIR), and 11B solid- state nuclear magnetic resonance (NMR) spectroscopy. The morphology and particle size were confirmed by using scanning and transmission electron microscopy. To evaluate the effect of boron and porosity on the shear thickening behavior, dispersions were prepared from mesoporous boron- modified silica (MSiB), control mesoporous silica (MSi), non-porous boron-modified silica (SiB), and control non-porous silica (Si) in polyethylene glycol. The shear thickening behavior was studied using steady shear rheology. The dispersion prepared from different loadings of synthesized MSiB containing 1.5 mmol boron showed more than 16 times increase in viscosity (657.7 Pa.s) compared to that of MSi (39.2 Pa.s) at a fairly low volume fraction (φ = 0.15) of silica. It is expected that the highly ordered mesoporous architecture of hybrid silica has improved the interaction between the particle and the dispersing medium through hydrogen bonding. The porous morphology of the hybrid mesoporous silica as well as the incorporation of boron in the silica network favors the formation of a frictional contact network, and a transition from continuous shear thickening (CST) to discontinuous shear thickening (DST) behavior was observed. Therefore, silica prepared via incorporation of boron as well as porosity can be material of interest in variety of applications, for example, soft body armors, sporting goods, and shear thickening electrolytes for high impact resistant batteries.  相似文献   

15.
Narrow size distribution cubic Co3O4 nanoparticles were synthesized and rheological properties of suspensions of the cubes in oligomeric polyethylene glycol (PEG) were explored over a range of particle volume fractions and rotational shear flow conditions. At low and high particle volume fractions, the relative viscosity of the suspensions is described by a Krieger–Dougherty formula with an intrinsic viscosity consistent with expectations for suspensions of ideal cuboids. At intermediate to high particle loadings, the suspensions manifest complex rheological behavior, including shear thinning and shear-thickening features. These observations are discussed in terms of the charge carried by the cubes and the shear rate/volume fraction dependency of the transition from shear thinning to shear thickening.  相似文献   

16.
In this study, colloidal systems with SiO2 nanoparticle as viscosity modifier additive were synthesized in the lubricating oil via an in situ Stober sol-gel method. The fluid characters of lubricating oil and viscosity variation were carefully investigated via rheological methods. The results showed that the lubricating oil transformed from Newtonian fluid to non-Newtonian fluid with increasing the concentration of nanoparticles, and smaller particles displayed better thickening effect toward lubricating oil. For the system with highly concentrated nanoparticle (20?wt%), the rheological behavior mainly depends on the size of nano-SiO2. The lubricating oil with smaller nano-SiO2 particles displayed higher structural strength and response rate, resulting in good recoverability after high-speed shear. The viscosity changed with temperature and also displayed a thermo-responsive behavior, which significantly alleviated the effect of shear thinning on the viscosity under high temperature. This study presented a new strategy for effectively tuning the fluid characters and modifying the viscosity of lubricating oils by adding highly concentrated inorganic nanoparticles.  相似文献   

17.
研究了无鳞鱼———泥鳅的体表黏液流变行为,发现黏液的稳态流动存在着3个不同区域:第一区域内,黏度随剪切速率(γ)变化不显著,呈现牛顿流动行为;第二区域内,随γ增大,黏度下降,呈现非牛顿行为;第三区域内,随γ继续增大,黏度又基本保持不变.黏液表观黏度(ηa)与γ的关系可用Carreau模型很好地拟合,其增比黏度(ηsp)与浓度(c)的关系为ηsp∝c1.5,表明黏液处于亚浓缠结区域.在测试频率(ω)范围内,黏液的动态储能模量(G′)大于动态损耗模量(G″),表明与黏性相比较,弹性占优,且G′及G″随ω变化不显著.存在一临界温度(35℃),当低于35℃时,黏液黏度随温度变化不显著,当高于35℃时,黏液变性,表现出不同的流变行为.  相似文献   

18.
The limits of linear viscoelastic behavior of polystyrene solutions have been investigated by subjecting them to large-amplitude oscillatory strains, γ0. At strains less than one we find that the dynamic storage modulus G′(ω,γ0) and the dynamic loss modulus G″(ω,γ0) decrease quadratically with increasing strain. As a measure of the size of the linear viscoelastic region, we have determined the strain at which the moduli have fallen 5% below their zero-strain values. This strain, γNL, is found to be independent of frequency ω at high frequencies but to increase with decreasing frequency at low frequencies. Behavior of this type is in qualitative agreement with the recent constitutive equation developed by Doi and Edwards. More specifically, we find that the rate of decrease of the storage modulus with increasing strain is quite similar to that predicted by their theory, but that the rate of decrease of the loss modulus is much slower. Some possible approaches for improving the agreement with experimental results are suggested. In the course of our work an interesting hydrodynamic instability was observed. The nature of this instability and methods to avoid it are discussed.  相似文献   

19.
The structure and viscoelastic properties of fumed silica gels in dodecane were studied by means of dynamic rheology. With increasing the specific surface area of fumed silica nanoparticles, the plateau elastic modulus (G′), which is frequency-independent and shows the characteristic of a network of the fumed silica gels, decreases. Such networks of fumed silica gels show a significant temperature-dependent behavior and a transition temperature (T c) related with the restructuring of nanoparticle chain aggregates of fumed silica in gels. Under oscillatory shear, the fumed silica gels experience disorganization and reorganization and present strong structural recovery ability after adjusting oscillatory shear (AOS) at small strain amplitudes (1–10%), and a more perfect network structure than that in origin gels can be induced. Elevated temperature (above T c) improves the network structure to be more compact and stronger than that at a lower temperature, as a result, the deformation resistance during the AOS period and the structural recovery after AOS are enhanced. These results indicate that the network structure and viscoelastic properties of fumed silica gels can be tailored and optimized by performing small-amplitude oscillatory shear at a properly selected temperature.  相似文献   

20.
The interfacial rheology of sorbitan tristearate monolayers formed at the liquid/air interface reveal a distinct nonlinear viscoelastic behavior under oscillatory shear usually observed in many 3D metastable complex fluids with large structural relaxation times. At large strain amplitudes (gamma), the storage modulus (G') decreases monotonically whereas the loss modulus (G') exhibits a peak above a critical strain amplitude before it decreases at higher strain amplitudes. The power law decay exponents of G' and G' are in the ratio 2:1. The peak in G' is absent at high temperatures and low concentration of sorbitan tristearate. Strain-rate frequency sweep measurements on the monolayers do indicate a strain-rate dependence on the structural relaxation time. The present study on sorbitan tristearate monolayers clearly indicates that the nonlinear viscoelastic behavior in 2D Langmuir monolayers is more general and exhibits many of the features observed in 3D complex fluids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号