首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A series of light-responsive azo-oxadiazole-based bent-shaped molecules was synthesised and characterised. Their effects as dopants on the blue phases (BPs) range of the chiral nematic liquid crystal (N*LC) matrix and light-responsive properties including the photo-inducing change of UV absorption properties, photo-adjusting the BP structure as well as the temperature range were investigated. It was found that the azo-oxadiazole-based bent-shaped molecules with branched terminal had better miscibility in LC host than the molecules with straight terminal, and that increasing the length of rigid core of bent-shaped molecules will greatly improve the effect of widening the BP temperature range.  相似文献   

2.
Four series of symmetrically 2,5-disubstituted 1,3,4-oxadiazoles with different lateral substituents and terminal alkoxy chain length were synthesised and characterised. Then, all these bent-shaped compounds were separately doped into the blue phase (BP) liquid crystal host and their effects on the BP range of the host were investigated, which shows that the BP ranges varied greatly with the difference in the structure of 2,5-disubstituted 1,3,4-oxadiazoles and their doped concentration. Moreover, in order to explore the influence of the inherent molecular geometry and properties of the bent-shaped molecules on the stability of BPs, the molecular structures of all the compounds were studied by using the theory of density functional theory, and the optimised structural parameters of the molecules were calculated at the B3LYP/6–31G* level.  相似文献   

3.
A photoresponsive azobenzene molecule DCAZO2 with two cholesteryl groups linked to both sides of the azobenzene group is doped in a mixture of nematic liquid crystal E7 and chiral dopant S811 (61.9 wt% E7, 36.1 wt% S811 and 2.0 wt% DCAZO2). Cooled from isotropic phase to 33.0°C, chiral nematic liquid crystal (N*LC) was formed in the sample and then the temperature was kept unchanged at 33.0°C. UV light irradiation induces the transcis photoisomerisation and thus an obvious phase transition. When the azobenzene groups isomerise to a cis-saturated state, the UV light was turned off and the white light was turned on at the same time. The bent-shaped cis isomer then turns back to the planar trans isomer gradually. A blue–green platelet texture representing cubic blue phase (BP) was observed and the size of the platelets was increased along with the cistrans isomerisation. UV–vis absorption spectra indicate that the photoinduced BP exists when the isomerisation degree is between 79% and 18%, and further cistrans isomerisation change BP back into N*LC. The large geometric structure of the cholesteryl groups and the large bent angle θ of the cis isomer are supposed to be responsible for the interesting result.  相似文献   

4.
<正>A novel series of chiral dopants synthesized from(S)-1,2-propanediol and mesogenic carboxylic acids were characterized by FT-IR,~1H NMR,elemental analysis and their helical twisting properties were investigated by doping the chiral dopants into a nematic liquid crystal host(SLC-1717).The results show that,the helical pitch of N~*-LC mixture exhibited a terminal alkyl chain length dependence and the molecular twisting power β also exhibited a temperature dependence(increasing β with increasing temperature).  相似文献   

5.
《Liquid crystals》2012,39(12):1769-1779
ABSTRACT

Four chiral dopants exhibiting smectic LC phases themselves were prepared and their helical twisting power (HTP) and thermal phase behaviour in mixtures with four various LC hosts were studied. The influence of host liquid crystal on HTP was evaluated and generally higher values were found for hosts with high birefringence. Unexpectedly, high enhancement was found for an LC-chiral dopant pair, both having a similar aromatic core – biphenyl ring substituted with polar group. All studied chiral dopants exhibited limited compatibility with the LC hosts in twisted nematic phase at room temperature. For one of the studied mixtures, it was able to obtain single twisted nematic phase with selective light reflection band with maximum at wavelength about 1.0 µm. Carboxylic acid-type dopants exhibited total compatibility with the studied host in single twisted nematic phase at elevated temperatures, allowing preparation of mixtures with reflection band in the visible range. In case of the carboxylic acid dopants, blue phases for optimised compositions were observed. Intermolecular hydrogen bonding between carboxylic acid proton and pyridine nitrogen of chiral dopants was found. Doping the LC host with these dopants led to slight enhancement of HTP value and higher solubility in the LC host.  相似文献   

6.
A kind of blue phase liquid crystal (BPLC), consisting of nematic liquid crystal, E7, and chiral dopants, CB15 and R1011, was investigated by doping PbS nanoparticles. The blue phase temperature range was extended from 3oC to 4.6°C by doping PbS nanoparticles with diameters around 9.6 nm. A kind of porous texture was observed both in the forming process of PbS nanoparticles doped BPLCs as well as in the BPLCs (with/without PbS nanoparticles) under assisting electric field. The porous texture may indicate that the liquid crystals molecule should be reoriented during the formation process of PbS nanoparticles doped BPLCs.  相似文献   

7.
Carbon nanotube (CNT)-doped polymer-stabilised blue phase (PSBP) liquid crystal cells driven by an in-plane field are fabricated. Their electro-optical properties are investigated for both single-wall and multiwall CNT dopants. A small amount of CNT dopants in PSBP liquid crystals leads to broadening the blue phase temperature range over 42°C and stabilising the reflection wavelength against temperature changes. A lower Kerr constant and threshold voltage are obtained for a higher CNT concentration. Higher CNT concentrations lead to an increase in the elastic constant; therefore, the rise time of CNT-doped PSBP liquid crystal cells increases and decay time decreases.  相似文献   

8.
The polarization powers δp of four chiral dopants with (R,R)-2,3-difluorooctyloxy side-chains were measured in four liquid crystal hosts with isotropic (I)-nematic (N)-smectic A (SmA)-smectic C (SmC) phase sequences. The four chiral dopants differ in terms of their core structures: 2-phenylpyridine (MDW950), biphenyl (5), 2-phenylpyrimidine (6) and 2-(3-nitrophenyl)pyrimidine (7). In each case, δp varies with the structure of the liquid crystal host, which is consistent with the behaviour of so-called Type II dopants that normally feature a chiral core structure. The δp(host) profile was found to depend on the degree of biaxiality of the dopant core structure, and on the degree of steric coupling between the chiral 2,3-difluorooctyloxy side-chain and the core. Conformational analyses at the B3LYP/6-31G* level suggest that the 2,3-difluorooctyloxy side-chain is conformationally more rigid than conventional chiral side-chains due to the added electrostatic repulsion of the two adjacent fluoro groups combined with the hyperconjugative 'gauche effect', and may therefore have a higher degree of biaxiality on the time average. This biaxial character should make the chiral side-chain more sensitive to variations in quadrupolar ordering imposed by the SmC phase of the liquid crystal host, and may therefore explain the dependence of δp on the host structure reported herein.  相似文献   

9.
In this study,a novel series of chiral 1,2-propanediol derivatives with different electron-donating and electron-withdrawing groups were synthesized and characterized by FT-IR and ~1H NMR.The helical twisting properties of all the chiral dopants were investigated by doping the chiral dopants into a nematic liquid crystal host(SLC-1717).The results indicate that the donor-acceptor electron effect have a prominent influence on helical twisting property of the chiral nematic phase induced by the chiral dopants. Introducing electron-withdrawing groups into the terminal ends of chiral 1,2-propanediol can decrease the absolute values of the helical twisting power.In addition,the helix inversion temperatures of the induced chiral nematic phase are variational with the change of terminal groups.  相似文献   

10.
For practical guest–host applications, it is important to choose dyes with a high ability of orientation in the liquid crystal (LC) matrix. In this experimental work, two different azo-structured dyes (disperse yellow 3 and 7) were separately doped to each of two different nematic LCs (E7 and ZLI-1132). Their solubilities, textures, phase transition temperatures and order parameters were determined. At the second stage, single-walled carbon nanotubes (SWCNTs) in a small amount were separately added to each of these solutions, and the experiments were repeated as similar to the previous ones. The solubilities of dyes in the LC E7 were lower than those of ZLI-1132. Moreover, the highest order parameter value was attained with yellow 7 dye in ZLI-1132 nematic host. Co-use of nanoparticles (CNTs) as dopant resulted in notable increases in order parameters. These dyes and CNTs did not significantly destabilise the mesomorphic phase of nematic hosts. An appreciable change in textures was not monitored with addition of dopant(s). In addition, it was observed that the narrowing on the temperature range of the LC did not take place with the addition of dopants to the crystal; on the contrary, an increase was recorded.  相似文献   

11.
Blue phase (BP) stability of a chiral nematic liquid crystal (LC) mixture is dependent upon chemical structure as well as physical properties. In this study, the blue phase temperature range dependent on alkyl chain length was investigated in order to evaluate the relationship between blue phase stability and the molecular structures of four kinds of 4-n-alkyloxy-4'-cyanobiphenyl (n-OCB) homologue chiral nematic LC mixtures composed of rod-like nematic LCs. It was confirmed that the blue phase temperature range was strongly dependent upon the molecular parity, K 33/K 11 and the helical twist power of the n-OCB homologues chiral nematic LC mixtures.  相似文献   

12.
The preparation is reported of particles of photopolymerisable monomer/chiral dopant composites with a crystalline (Cr)‐chiral nematic (N*) phase transition. By mixing particles with different pitches of the N* phase in the Cr phase and crosslinking the liquid crystal (LC) monomer molecules by photopolymerisation in the planarly oriented N* phase, an N*‐LC composite film with a non‐uniform pitch distribution was obtained. Experimental results show that the bandwidth of the reflection spectrum and the location of reflection band of the composite films can be controlled accurately by controlling the pitch lengths of the N* phase of the particles. Effects of polymerisation temperature and UV intensity on the non‐uniform pitch distribution of N*‐LC composite films were investigated.  相似文献   

13.
The circularly polarized luminescence (CPL) of chiral disubstituted liquid‐crystalline polyacetylene (di‐LCPA) can be dynamically switched and amplified from left‐ to right‐handed CPL and vice versa through the selective transmission of CPL across a thermotropic chiral nematic liquid crystal (N*‐LC) phase. By combining a chiral di‐LCPA CPL‐emitting film with an N*‐LC cell and tuning the selective reflection band of the N*‐LC phase to coincide with the CPL emission band, a CPL‐switchable cell was constructed. The phase change induced by the thermotropic N*‐LC cell by varying the temperature leads to a change in the selective transmission of CPL, which enables the dynamic switching and amplification of CPL. It is anticipated that CPL‐switchable devices might find applications in switchable low‐threshold lasers and optical memory devices.  相似文献   

14.
In this study, we investigated the enlargement of liquid crystal (LC) blue-phase (BP) temperature range using the rod-like low-molecular-weight cyano phenyl-type chiral nematic LC with various core group and chiral dopant concentrations. Also, the electro-optic response time was investigated for them. We found that the BP temperature range was strongly dependent upon the core structure and the chiral dopant concentration for the chiral nematic LC mixtures having the same terminal group. Also, we found a stable BP with a wide temperature range (more than 6 K), including a BP-isotropic coexistence state over 13.5 K upon heating and cooling processes and very fast response time (less than 1 ms), by using the cyano phenyl-type chiral nematic LC mixture with a high molecular aspect ratio and a high chiral dopant concentration.  相似文献   

15.
A composite system of Fe3O4 nanoparticle-doped chiral nematic liquid crystals (N*LC) with flexible display performance was proposed. Fe3O4 nanoparticle and the nanoparticle-doped N*LC composite were detailed prepared and investigated. The influence of nanoparticle doping amount and chiral compound content on the magnetic performance as well as electrical performance of the flexible device had been studied in detail. The most suitable N*LC composites for magnetic-driven display had been found. With the characteristics of simple preparation, good stability and high resolution, the Fe3O4 nanoparticle-doped N*LCs had promising applications for power-free magnetic-driven flexible LC paper or display board.  相似文献   

16.
In this report, based on the results derived from the extensive study into the thermal and photophysical properties, an anomalous mesomorphic behavior of photoluminescent, chiral nematic (N*) liquid crystalline dimers, belonging to two different series has been revealed. They comprise cholesterol and fluorescent three-ring Schiff base or salicylaldimine core interlinked via an ω-oxyalkanoyloxy spacer of varying length and parity. The effect of molecular structure on the liquid crystal (LC) behavior and photophysical properties of both the series has been probed by varying the length of the terminal n-alkoxy tails for a fixed (odd or even) parity of the spacer. The detailed investigations using complementary techniques not only evidenced the existence of the N* phase in all the dimers synthesized but also the occurrence of an intriguing odd-even effect; blue phases (BPs) exist in all the dimers comprising even-membered spacer, which surprisingly remains totally absent in their odd-membered counterparts. While the results reported hitherto are exactly opposite to the aforesaid findings, this atypical behavior has been interpreted in terms of the over-all shape of the dimers rendered by the orientation of terminal tails. Photophysical studies carried out clearly revealed the intrinsic light emitting feature of the dimers not only in their dilute solutions but also in their three condensed states viz., solid, N* phase, and isotropic liquid state; the emission intensities of the N* phase varies with the change in temperature, as expected. CD spectra of the N* phase recorded as a function of temperature show bisignate CD band characteristically, signifying large chiral correlations in the molecular self-assembly, while the origin of bands from positive to negative region suggests a right-handed twist of the N* helix.  相似文献   

17.
The polarization powers δp of four chiral dopants with (R,R)‐2,3‐difluorooctyloxy side‐chains were measured in four liquid crystal hosts with isotropic (I)–nematic (N)–smectic A (SmA)–smectic C (SmC) phase sequences. The four chiral dopants differ in terms of their core structures: 2‐phenylpyridine (MDW950), biphenyl (5), 2‐phenylpyrimidine (6) and 2‐(3‐nitrophenyl)pyrimidine (7). In each case, δp varies with the structure of the liquid crystal host, which is consistent with the behaviour of so‐called Type II dopants that normally feature a chiral core structure. The δp(host) profile was found to depend on the degree of biaxiality of the dopant core structure, and on the degree of steric coupling between the chiral 2,3‐difluorooctyloxy side‐chain and the core. Conformational analyses at the B3LYP/6‐31G* level suggest that the 2,3‐difluorooctyloxy side‐chain is conformationally more rigid than conventional chiral side‐chains due to the added electrostatic repulsion of the two adjacent fluoro groups combined with the hyperconjugative ‘gauche effect’, and may therefore have a higher degree of biaxiality on the time average. This biaxial character should make the chiral side‐chain more sensitive to variations in quadrupolar ordering imposed by the SmC phase of the liquid crystal host, and may therefore explain the dependence of δp on the host structure reported herein.  相似文献   

18.
In the present work, polymer-stabilised blue phase liquid crystal ***(PS-BPLC) that exhibit the blue phase (BP) in a temperature range of 312.15 K to 298.15 K has been prepared. The textural and electro-optic studies were performed in the BP range using an in-plane switching (IPS) cell. Platelet-type textures of cubic BP having an average domain size of ~12 µm were observed. The on-state voltage increased with increasing the temperature due to reduced value of the Kerr constant. Further, the hysteresis was found to be reduced from 19.2% to 5.1% by operating the PS-BPLC sample cell at an elevated temperature.  相似文献   

19.
Chirality switching is intriguing for the dynamic control of the electronic and optical properties in nanoscale materials. The ability to photochemically switch the chirality in liquid crystals (LCs) is especially attractive given their potential applications in electro-optic displays, optical data storage, and the asymmetric synthesis of organic molecules and polymers. Here, we present a dynamic photoswitching of the helical inversion in chiral nematic LCs (N*-LCs) that contain photoresponsive axially chiral dopants. Novel photoresponsive chiral dithienylethene derivatives bearing two axially chiral binaphthyl moieties are synthesized. The dihedral angle of the binaphthyl rings changes via the photoisomerization between the open and closed forms of the dithienylethene moiety. The N*-LCs induced by the dithienylethene derivatives that are used as chiral dopants exhibit reversible photoswitching behaviors, including a helical inversion in the N*-LC and a phase transition between the N*-LC and the nematic LC. The present compounds are the first chiral dopants that induce a helical inversion in N*-LC via the photoisomerization between open and closed forms of the dithienylethene moiety.  相似文献   

20.
A (photo-polymerizable liquid crystal (LC) monomer/LCs/chiral dopant/photoinitiator) mixture with a smectic A (SmA)-chiral nematic (N*) phase transition was sandwiched between two ITO glass substrates which were not subjected to any surface orientation treatment. When an electric field-induced homeotropically oriented SmA phase of the mixture was irradiated with UV light, an oriented liquid crystalline polymer (LCP) network was formed upon photo-polymerization of the LC monomer. Then, a (homeotropically oriented LCP network/LCs/chiral dopant) composite with a SmA-N* phase transition was prepared. A focal-conic texture appeared in the heat-induced N* phase of the composite upon heating from the transparent state of the homeotropically oriented SmA phase; the focal-conic texture exhibited strong light scattering. Upon cooling the composite to the SmA phase, this phase was again homeotropically oriented due to the strong intermolecular interaction between the LC molecules and the homeotropically oriented LCP network. Thus, the transparent state of the SmA phase and the light scattering state of the N* phase occurred reversibly upon cooling and heating, accompanied by the thermal SmA-N* phase transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号