首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two new banana-shaped tungstophosphates [M6(H2O)2(PW9O34)2(PW6O26)]17 ? (MII?=?NiII, CoII) incorporating two types of lacunary polyoxometalate units have been synthesized in aqueous solution and characterized by elemental analyses, IR, and UV spectra, and single-crystal X-ray diffraction. Structural analyses show that Na6H11[Ni6(H2O)2(PW9O34)2(PW6O26)]?·?32H2O (1) and Na7H10[Co6(H2O)2(PW9O34)2(PW6O26)]?· 31H2O (2) are generated from two tri-MII substituted B-α-[(MOH2)M2PW9O34] Keggin units connected by a hexavacant [PW6O26]11? Keggin fragment, leading to the MII-containing banana-shaped tungstophosphates. Magnetic properties of 2 show decrease of the molar magnetic susceptibility at higher temperatures results from spin-orbit coupling of CoII and antiferromagnetic interactions whereas the maximum at the lower temperatures is indicative of the ferromagnetic interactions within the trinuclear CoII spin cluster in the sandwich belt.  相似文献   

2.
Three polyoxometalate supramolecular assemblies based on rigid 2-(4-thiazolyl)benzimidazole (L) and two types of polytungstate anions, [CuII2Cl(L)4(PW12O40)]·3H2O (1), [CuII(L)2(H2O)]2[P2W18O62]·(HL)2·6H2O (2), and [ZnII(L)3]4[H(KPW12O40)3] (3), have been synthesized and characterized by single-crystal X-ray diffraction, elemental analyses, and IR spectra. Compound 1 contains binuclear copper clusters {Cu2L4Cl}3+ with Cl as bridges. These binuclear clusters and [PW12O40]3– anions construct a supramolecular 2-D layer through hydrogen-bonding interactions. In 2, the [CuL2(H2O)]2+ subunits and Wells–Dawson anions build a 1-D supramolecular chain. In 3, the [PW12O40]3– anions are covalently linked by K+ to form an inorganic chain. These chains and discrete [ZnII(L)3]2+ subunits construct a 3-D supramolecular structure. The electrochemical and photocatalytic properties of 13 have been studied.  相似文献   

3.
Ten new complexes, [Cu2(L1)(NO3)2]·2H2O (1), [Cu4(L1)2]·4ClO4·H2O (2), [Cu2(L1)(H2O)2]·(adipate) (3), [Cu6(L1)2(m-bdc)4]·2DMF·5H2O (4), [Cu2(L1)(Hbtc)]·5H2O (5), [Cu2(L1)(H2O)2]·(ntc)·3H2O (6), [Co2(L2)]·[Co(MeOH)4(H2O)2] (7), [Co3(L2)(EtOH)(H2O)] (8), [Ni6(L2)2(H2O)4]·H2O (9) and [Zn4(L2)(OAc)2]·0.5H2O (10), have been synthesized. 1 displays a [Cu2(L1)(NO3)2] monomolecular structure. 2 shows a supramolecular chain including [Cu2L1]2+. In 3, two Cu(II) ions are connected by L1 to form a [Cu2(L1)(H2O)2]2+ cation. In 4, the m-bdc anions bridge Cu(II) ions and L1 anions to form a layer. Both 5 and 6 display 3-D supramolecular structures. 7 consists of both [Co2L2]2? and [Co(MeOH)4(H2O)2]2+ units. 8 and 9 show infinite chain structures. In 10, Zn(II) dimers are linked by L2 to generate a 3-D framework. The magnetic properties for 4 and 8 and the luminescent property for 10 have been studied.  相似文献   

4.
Four coordination polymers, [CsL1(H2O)2]·H2O (1), [CsL2(H2O)2]·H2O (2), [Rb2(L2)2(H2O)2]·2H2O (3) and [RbL3(H2O)] (4), were synthesized by Cs(I), Rb(I) and 4′-hydroxyisoflavone-3′-sulfonates L1L3 [L1 = 7-methoxy-4′-hydroxyisoflavone-3′-sulfonate, L2 = 7-ethoxy-4′-hydroxyisoflavone-3′-sulfonate, L3 = 7-ethoxy-4′,5-dihydroxyisoflavone-3′-sulfonate]. The crystal structures of 14 were determined by single-crystal X-ray diffraction. The influences of 4′-hydroxyisoflavone-3′-sulfonate ligands and Cs+, Rb+ on their structural features and self-assembly were investigated. The sulfonates of L1L3 not only coordinate with Cs+ or Rb+ directly, but also bridge the organic region and the inorganic region in 14. Non-covalent interactions such as coordination interaction, ππ stacking interaction and hydrogen bonding assembled 14 into 3-D networks together with the electrostatic interactions between Cs+, Rb+ and the sulfonate anions.  相似文献   

5.
Two new phosphatotungstates containing Keggin clusters, [Cu(2,2′-bipy)2]5[PW12O40] · 2H2O (1) (2,2′-bipy = 2,2′-bipyridine) and (Hpip)3[PW12O40] (2) (pip = piperazine) have been hydrothermally synthesized and characterized by IR, element analysis and cyclic voltammogram. Compound 1 consists of one discrete Keggin polyanion [PW12O40]5?, five isolated complex cations [Cu(2,2′-bipy)2]+ and two water molecules. The organic moieties exhibit regular packing with offset aromatic–aromatic interactions between the bipys, leading to a compact supramolecular framework structure. Compound 2 is made up of one discrete Keggin polyanion [PW12O40]3? and three pip cations. Compounds 1 and 2 were employed to fabricate bulk-modified carbon paste electrode to research on their electrochemistry properties. Their electrochemical behaviors and electrocatalysis that 1- and 2-CPEs have electrocatalytic activities toward the oxidation of nitrite. Compound 1 is in the orthorhombic system, space group Pna21, with a = 28.1928(9), b = 21.5479(6), c = 19.9088(6) Å, V = 12,094.5(6) Å3 and Z = 4. Compound 2 is in the rhombohedral system, space group R $ \overline{3} Two new phosphatotungstates containing Keggin clusters, [Cu(2,2′-bipy)2]5[PW12O40] · 2H2O (1) (2,2′-bipy = 2,2′-bipyridine) and (Hpip)3[PW12O40] (2) (pip = piperazine) have been hydrothermally synthesized and characterized by IR, element analysis and cyclic voltammogram. Compound 1 consists of one discrete Keggin polyanion [PW12O40]5−, five isolated complex cations [Cu(2,2′-bipy)2]+ and two water molecules. The organic moieties exhibit regular packing with offset aromatic–aromatic interactions between the bipys, leading to a compact supramolecular framework structure. Compound 2 is made up of one discrete Keggin polyanion [PW12O40]3− and three pip cations. Compounds 1 and 2 were employed to fabricate bulk-modified carbon paste electrode to research on their electrochemistry properties. Their electrochemical behaviors and electrocatalysis that 1- and 2-CPEs have electrocatalytic activities toward the oxidation of nitrite. Compound 1 is in the orthorhombic system, space group Pna21, with a = 28.1928(9), b = 21.5479(6), c = 19.9088(6) ?, V = 12,094.5(6) ?3 and Z = 4. Compound 2 is in the rhombohedral system, space group Rc, with a = 17.9191(5), c = 23.7439(9) ?, V = 6,602.6(4) ?3 and Z = 6. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
New bi- and trihomonuclear Mn(II), Co(II), Ni(II), and Zn(II) complexes with sulfa-guanidine Schiff bases have been synthesized for potential chemotherapeutic use. The complexes are characterized using elemental and thermal (TGA) analyses, mass spectra (MS), molar conductance, IR, 1H-NMR, UV-Vis, and electron spin resonance (ESR) spectra as well as magnetic moment measurements. The low molar conductance values denote non-electrolytes. The thermal behavior of these chelates shows that the hydrated complexes lose water of hydration in the first step followed by loss of coordinated water followed immediately by decomposition of the anions and ligands in subsequent steps. IR and 1H-NMR data reveal that ligands are coordinated to the metal ions by two or three bidentate centers via the enol form of the carbonyl C=O group, enolic sulfonamide S(O)OH, and the nitrogen of azomethine. The UV-Vis and ESR spectra as well as magnetic moment data reveal that formation of octahedral [Mn2L1(AcO)2(H2O)6] (1), [Co2(L1)2(H2O)8] (2), [Ni2L1(AcO)2(H2O)6] (3), [Mn3L2(AcO)3(H2O)9] (5), [Co3L2(AcO)3(H2O)9] · 4H2O (6), [Ni3L2(AcO)3(H2O)9] · 7H2O (7), [Mn3L3(AcO)3(H2O)6] (9), [Co2(HL3)2(H2O)8] · 4H2O (10), [Ni3L3(AcO)3(H2O)9] (11), [Mn3L4(AcO)3(H2O)9] · H2O (13), [Co2(HL4)2(H2O)8] · 5H2O (14), and [Ni3L4(AcO)3(H2O)9] (15) while [Zn2L1(AcO)2(H2O)2] (4), [Zn3L2(AcO)3(H2O)3] · 2H2O (8), [Zn3L3(AcO)3(H2O)3] · 3H2O (12), and [Zn3L4(AcO)3(H2O)3] · 2H2O (16) are tetrahedral. The electron spray ionization (ESI) MS of the complexes showed isotope ion peaks of [M]+ and fragments supporting the formulation.  相似文献   

7.
Four CuII and CoII complexes–[Cu(L1)Cl2(H2O)]3/2H2O · 1/2EtOH, [Cu(L1)2Cl2]6H2O, [Co(L1)Cl2]3H2O · EtOH, and [Co2(L1)(H2O)Cl4]1.5H2O · EtOH (L1 = 2,4,6-tri(2-pyridyl)-1,3,5-triazine; TPT)–were synthesized by conventional chemical method and used to synthesize another four metal complexes–[Cu(L1)I2(H2O)]6H2O, [Cu(L1)2I2]6H2O, [Co(L1)I(H2O)2]I · 2H2O, and [Co2(L1)I4(H2O)3]–using tribochemical reaction, by grinding it with KI. Substitution of chloride by iodide occurred, but no reduction for CuII or oxidation of CoII. Oxidation of CoII to CoIII complexes was only observed on the dissolution of CoII complexes in d6-DMSO in air while warming. The isolated solid complexes (CuII and CoII) have been characterized by elemental analyses, conductivities, spectral (IR, UV-Vis, 1H-NMR), thermal measurements (TGA), and magnetic measurements. The values of molar conductivities suggest non-electrolytes in DMF. The metal complexes are paramagnetic. IR spectra indicate that TPT is tridentate coordinating via the two pyridyl nitrogens and one triazine nitrogen forming two five-membered rings around the metal in M : L complexes and bidentate via one triazine nitrogen and one pyridyl nitrogen in ML2 complexes. In binuclear complexes, L is tridentate toward one CoII and bidentate toward the second CoII in [Co2(L1)Cl4]2.5H2O · EtOH and [Co2(L1)I4(H2O)3]. Electronic spectra and magnetic measurements suggest a distorted-octahedral around CuII and high-spin octahedral and square-pyramidal geometry around CoII.  相似文献   

8.
A new 3-D wheel-like calcium–cobalt phosphotungstate, Na6Ca3[Ca2(H2O)6Co9(OH)3(H2O)6(HPO4)2(PW9O34)3], is reported and characterized by IR, UV, and single-crystal X-ray diffraction. The crystal structure consists of an infinite 3-D array of [Ca2(H2O)6Co9(OH)3(H2O)6(HPO4)2(PW9O34)3]12? anions (1) connected by sodium and calcium metal cations. The novel feature is the presence of two Ca2+, bonded to oxygen of HPO4? and to H2O spanning opposite sides in the complex anion. The stability of the crystalline product and its morphology were studied by SEM-EDX and DSC techniques.  相似文献   

9.
Four metal complexes of N,N′-bis(salicyl)-2,6-pyridine-dicarbohydrazide ligand (H6L), [CoII(H4L)(H2O)2]·2DMF (1), [ZnII(H4L)(H2O)2]·2DMF (2), [CdII(H4L)(Py)2]·DMF·Py (3), and [CoIICo2III(H4L)4(H2O)4]·DMF·H2O (4), were synthesized and characterized by elemental analysis, IR, and single-crystal X-ray diffraction analysis. Structural studies revealed that complexes 13 present discrete mononuclear structures and complex 4 displays a centrosymmetric mixed-valence trinuclear structure. All four complexes are further extended into interesting two- or three-dimensional supramolecular frameworks. The luminescent properties of 2 and 3 were studied, which show emissions with maxima at 485 nm upon excitation at 396 nm for 2 and 476 nm upon excitation at 397 nm for 3, respectively.  相似文献   

10.
A proton-conducting metal–organic framework (MOF), {[Cu4(dpdo)12][H(H2O)27(CH3CN)12][PW12O40]3}n (where dpdo is 4,4′-bipyridine-N,N′-dioxide) (1), was synthesized by the reaction of CuHPW12O40·nH2O and dpdo at room temperature. Single-crystal X-ray diffraction analysis at 293?K revealed that 1 crystallized in the cubic space group Im-3 and presented a non-interwoven 3-D framework with cubic cavities and guest molecules. A large ionic water cluster H+(H2O)27, consisting of a water shell (H2O)26 and an encaged H+(H2O) as a center core, was trapped in the cubic cavity of the MOF {[Cu4(dpdo)12(PW12O40)3]?}. Thermogravimetric analysis suggests that 1 has high thermal stability, indicating that such a non-interwoven 3-D framework with cubic cavities is a suitable host for researching protonated water clusters. Its water vapor adsorption isotherm at room temperature and pressure shows that the water vapor adsorbed in it was 65.1 cm3?g?1 at the maximum allowable humidity. It exhibits good proton conductivities of 10?5–10?4?S?cm?1 at 100 °C in the relative humidity range 35–98%.  相似文献   

11.
The synthesis, structural, and magnetic characterization of five new members of the hexanuclear oximate [MnIII6] family are reported. All five clusters can be described with the general formula [MnIII6O2(R-sao)6(R′-CO2)2(sol)x(H2O)y] (where R-saoH2 = salicylaldoxime substituted at the oxime carbon with R = H, Me and Et; R′ = 1-naphthalene, 2-naphthalene, and 1-pyrene; sol = MeOH, EtOH, or MeCN; x = 0–4 and y = 0–4). More specifically, the reaction of Mn(ClO4)2·6H2O with salicylaldoxime-like ligands and the appropriate carboxylic acid in alcoholic or MeCN solutions in the presence of base afforded complexes 15: [Mn6O2(Me-sao)6(1-naphth-CO2)2(H2O)(MeCN)]·4MeCN (1·4MeCN); [Mn6O2(Me-sao)6(2-naphth-CO2)2(H2O)(MeCN)]·3MeCN·0.1H2O (2·3MeCN·0.1H2O); [Mn6O2(Et-sao)6(2-naphth-CO2)2(EtOH)4(H2O)2] (3); [Mn6O2(Et-sao)6(2-naphth-CO2)2(MeOH)6] (4) and [Mn6O2(sao)6(1-pyrene-CO2)2(H2O)2(EtOH)2]·6EtOH (5·6EtOH). Clusters 3, 4, and 5 display the usual [Mn6/oximate] structural motif consisting of two [Mn3O] subunits bridged by two Ooximate atoms from two R-sao2? ligands to form the hexanuclear complex in which the two triangular [Mn3] units are parallel to each other. On the contrary, clusters 1 and 2 display a highly distorted stacking arrangement of the two [Mn3] subunits resulting in two converging planes, forming a novel motif in the [Mn6] family. Investigation of the magnetic properties for all complexes reveal dominant antiferromagnetic interactions for 1, 2, and 5, while 3 and 4 display dominant ferromagnetic interactions with a ground state of S = 12 for both clusters. Finally, 3 and 4 display single-molecule magnet behavior with Ueff = 63 and 36 K, respectively.  相似文献   

12.
Three new transition metal complexes, [FeII(H2O)6][(C9H7NO3)2FeII] · H2O (1), H[K(H2O)3][(C9H7NO3)2CoII] · H2O (2), and [CoII(H2O)6][(C9H7NO3)2CoII] · H2O (3), with salicylideneglycine have been synthesized and characterized by elemental analysis, IR spectra, UV-Vis spectroscopy, and X-ray crystallography. The structure analyses indicate that the tridentate salicylideneglycine binds through aliphatic nitrogen, phenoxy, and carboxylic oxygen in the anion. There are many inter- and intra-molecular hydrogen bonds among lattice water, the anion, and the cation to form a 3-D network. The thermogravimetric analyses and the quantum chemistry calculations of compounds 1, 2, and 3 are also discussed.  相似文献   

13.
This article represents two types of entanglements, [Co2(bibp)(BTB)2][Co(bibp)2(H2O)2] (1) and [Co3(bibp)2(H2O)2(BTB)2]·2H2O·2DMF (2) (bibp = 4,4′-bis(1-imidazolyl)biphenyl and H3BTB = 1,3,5-tris(4-carboxyphenyl)benzene), which are 2-D→3-D polycatenated frameworks formed by parallel catenation of 1-D+2-D→2-D polythreaded motifs based on the double-layered sheet penetrated by ribbons of rings (1) and a 2-D→3-D mutual polythreading of three double-layered sheets with dangling arms (2), which is assembled by the same initial materials by simply changing the volume ratio of water/DMF medium.  相似文献   

14.
In acid-media ([H+] = 0.01–0.06 M), each of the thiol compounds, D-penicillamine (PEN, LPH2) and captopril (CAP, LCH2) exist in several proton-dependent forms which can reduce the superoxo complex [(en)(dien)CoIII(O2)CoIII(en)(dien)]5+ (1) to the corresponding peroxo [(en)(dien)CoIII(O2)CoIII(en)(dien)]4+ (2) or the hydroperoxo complex [(en)(dien)CoIII(OOH)CoIII(en)(dien)]5+ (3). The observed first-order rate constants, ko,P and ko,C for PEN and CAP increase with the increase in [TPEN] and [TCAP] (which are the analytical concentrations of the respective thiols) but decrease with the increase in the media-acidity ([H+]) and the media ionic strength (I). The protolytic equilibria in aqueous solution allow several potentially reducing forms to coexist for both PEN (LPH3+, LPH2, LPH?, and LP2?) and CAP (LCH2, LCH?, LC2?) but the kinetic analyses reveal that the order of reactivity for the species are LPH3+ ~ LPH2 <<< LPH? and LCH2 < LCH? <<< LC2?, respectively. The predominance and higher reactivities of the anionic species, LPH? and LC2? are supported by the negative slopes of the plots of ko,P or ko,C versus I. Moreover, a large value of kH/kD for PEN suggests an inner-sphere electroprotic reaction pathway while the absence of such effect for CAP strongly supports an outer-sphere electron transfer reaction. These propositions are supported by the structural features of LPH? and LC2?.  相似文献   

15.
A heptanuclear double-bowl-like cluster [Co7(mmp)6(OH)6]2·(ClO4)2·12H2O (12H2O, Hmmp is 2-methoxy-6-methyliminomethyl-phenol) has been synthesized through the microwave-assisted reaction of Co(ClO4)2·6H2O with 2-hydroxy-3-methoxy-benzaldehyde (Hhmb) and methylamine in mixed solvent (acetonitrile : distilled water = 9 : 1) for 29 min. 12H2O was heated until 180 °C and it formed a non-water complex [Co7(mmp)6(OH)6]2·(ClO4)2 (1). The core of 12H2O can be described as a double bowl, while the dodecanuclear water cluster stands on the bowl. Magnetic investigations show that 12H2O and 1 display ferromagnetic interaction between cobalt ions. Moreover, 1 shows single molecular magnet behavior under 2 K. Magnetic studies indicate that hydrogen bond plays a vital role in transferring magnetic exchange effects.  相似文献   

16.
Self-assemblies of the 2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz) and Cu(OH)2 in the presence of dicarboxylate ligands yielded four new complexes, [Cu4(bpca)4(L1)2(H2O)2]·5H2O (1), [Cu2(bpca)2(L2)(H2O)2]·2H2O (2), [Cu2(bpca)2(L3)(H2O)2]·H2O (3), and [Cu2(bpca)2(L4)(H2O)2]·3H2O (4) (bpca = bis(2-pyridylcarbonyl)amide anion, H2L1 = phthalic acid, H2L2 = succinic acid, H2L3 = maleic acid, H2L4 = acetylenedicarboxylic acid). Their structures were determined by single-crystal X-ray diffraction analyzes and further characterized by IR spectra and thermogravimetric analyzes. The five-coordinate Cu ions in 1 are bridged by phthalate to form 1-D chains, which are assembled into 3-D frameworks by extensive hydrogen bonds. Compounds 2–4 possess similar structures, built up of [Cu2(bpca)2(L)(H2O)2] (L = L2 for 2, L3 for 3, L4 for 4) and lattice molecules. The 3-D frameworks of 2–4 are completed by hydrogen bond interactions.  相似文献   

17.
Four cobalt(II) compounds, [Co(Bim)(IA)(H2O)2]n·0.5nH2O (1), [Co(Bim)(MA)(H2O)2]n (2), [Co2(Bim)2(MA)2]n·nH2O (3), and [Co3(Bim)4(TA)2(H2O)2]n·2.5nH2O (4), have been synthesized by solvothermal reactions of cobalt(II) salts with 1,1′-(5-methyl-1,3-phenylene)bis(1H-imidazole) [Bim] and aromatic polycarboxylic acids (H2IA = isophthalic acid, H2MA = 5-methylisophthalic acid, and H3TA = trimesic acid) as coligands. The four complexes were characterized by IR and UV?vis spectra, elemental analyses, X-ray powder and single-crystal diffractions, and thermogravimetric analyses (TGAs). 1 features a zigzag polymeric macrocycle chain containing a nanotubular channel, which is constructed by bridging the folded 20-membered macrocyclic [Co2(Bim)2] subunits with IA ligands. 2 represents a double-chain structure containing 18-membered macrocyclic [Co2(Bim)(MA)] subunits. Both 3 and 4 are 2-D porous coordination polymers but have different architectures. In 3, cage-like [Co4(Bim)2(MA)4] subunits are 4-connected nodes that are further bridged by another half-set of Bim ligands to form a 2-D helical structure containing one-dimensional achiral channels and alternately arranged left- and right-handed helical tubular channels. In 4, Bim ligands bridge three crystallographically independent Co centers into sharply distorted left- and right-handed helices which are further connected by TA ligands to form a meso layer about 3.0 nm monolayer thickness with a unique (3,4)-connected topology. The structural diversities of coordination polymers 14 are tuned by the flexible coordination number of Co and coligand polycarboxylates. Thermal analyses show that the main frameworks of all compounds remain stable to 352 °C. Moreover, the interesting color changes of crystals 14, varying from pink to purple and dark blue, result from the d → d* transitions of chromophoric Co2+ in different coordination geometries as determined by the UV–vis spectra in combination with crystal structure analyses.  相似文献   

18.
Kenji Nomiya  Makoto Miwa 《Polyhedron》1985,4(8):1407-1412
The theory of structural stability, being based on the number of closed loops per MO6 octahedral unit in the polyanion-cage, has been applied to a variety of heteropoly- and isopoly-compounds with previously unreported structures. The discussion includes the prediction of the structure of lacunary Keggin heteropoly-compound, Cs7Na2[PW10O37]·8H2O, recently obtained by Knoth and Harlow, the reinvestigation of mixed-type Keggin polyanions, [SiW9Co3(H2O)3O37]10? and [SiW11CoO39]6?, recently prepared by Pope's group, the interpretation of chemical behaviours of some molybdo- and tungsto-vanadates, the structural stabilities of Jeannin-type [As2W21O69(H2O)]6? polyanion and its related compounds, and some remarks on Weakley-type [X(W5O18)2]n? polyanions and Flynn-Stucky-type [X(Nb6O19)2]n? complexes belonging to the hybrid-complex of polyanion.  相似文献   

19.
Two lanthanide complexes, (mnH)2[EuIII(egta)]2·6H2O (1) (H4egta = ethyleneglycol-bis-(2aminoethylether)-N,N,N,N′-tetraacetic acid) and (mnH)4[EuIII2(dtpa)2]·6H2O (2) (H5dtpa = diethylenetriamine-N,N,N,N″,N″-pentaacetic acid), have been synthesized and characterized by FT-IR spectroscopy, thermal analysis, and single-crystal X-ray diffraction. X-ray diffraction reveals that 1 is multinuclear nine-coordinate and crystallizes in the monoclinic crystal system with space group C2/c. The obtained cell dimensions are a = 38.513(3)?Å, b = 13.5877(8)?Å, c = 8.7051(5)?Å, β = 99.6780(10)°, and 4490.6(5)?Å3. Each methylamine (mnH+) cation in 1, through hydrogen bonds, connects three adjacent [EuIII(egta)]? anions. The [EuIII(egta)]? anions connect one another forming a 1-D multinuclear zigzag chain structure along the c-axis. Complex 2 is nine-coordinate binuclear structure with tricapped trigonal prismatic conformation and crystallizing in the monoclinic crystal system, but with space group P21/n. The obtained cell dimensions are a = 9.9132(8)?Å, b = 24.1027(18)?Å, c = 10.7120(10)?Å, β = 109.1220(10)°, and 2418.2(3)?Å3. For 2, there are two kinds of methylamine cations (mnH+) connecting [EuIII2(dtpa)2]4? complex anions and lattice waters through hydrogen bonds, leading to formation of a 2-D ladder-like layer structure.  相似文献   

20.
Four metal(II) complexes with benzene-1,2,3-triyltris(oxy)triacetic acid (H3L), {[Co1.5(L)(H2O)6]·6H2O}n (1), {[Co1.5(L)(4,4′-bipy)1.5(H2O)4]·4H2O}n (2), {[Co(HL)(2,2′-bipy)(H2O)2]·1.5H2O}n (3), and {[Cu(HL)(phen)(H2O)2]·H2O}n (4) (4,4′-bipy = 4,4′-bipyridine; 2,2′-bipy = 2,2′-bipyridine; phen = phenanthroline), were prepared and structurally characterized. Complex 2 displays a 1-D structure, while 1, 3, and 4 reveal 0-D structures, which further extend to 3-D supramolecular networks by hydrogen bonding interactions, of which 1 and 4 contain double-helical chains, 2 includes meso-helices, and 3 comprises single-helices. Furthermore, the thermal stabilities and antibacterial activities of the complexes were studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号