首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The orientation of metal–organic supercontainer (MOSC) molecules in Langmuir films was systematically studied at the air–water interface. The acidity of the aqueous subphases plays a significant role in tuning the orientation of MOSC molecules in the Langmuir films. Furthermore, Langmuir–Blodgett films of MOSCs were prepared and the uniform multilayer structures demonstrated various surface properties, depending on their conditions of fabrication. Our use of Langmuir films provides a novel approach to access tunable assemblies of MOSC molecules in two‐dimensional thin films.  相似文献   

2.
ABSTRACT

The properties of the thin films of liquid crystal (LC) molecules can be governed easily by external fields. The anisotropic structure of the LC molecules has a large impact on the electrical and optical properties of the film. The Langmuir monolayer (LM) of LC molecules at the air–water interface is known to exhibit a variety of surface phases which can be transferred onto a solid substrate using the Langmuir?Blodgett (LB) technique. Here, we have studied the LM and LB films of asymmetrically substituted bent-core LC molecules. The morphology of LB film of the molecules is found to be a controlling parameter for aligning bulk LC in the nematic phase. It was found that the LB films of the bent-core molecules possessing defects favour the planar orientation of nematic LC, whereas the LB films with fewer defects show homeotropic alignment. The defect in LB films may introduce splay or bend distortions in the nematic near the alignment layer which can govern the planar alignment of the bulk LC. The uniform layer of LB film facilitates the molecules of nematic to anchor vertically due to a strong van der Waals interaction between the aliphatic chains leading to a homeotropic alignment.  相似文献   

3.
In this article, we describe the surface-assisted photoalignment of discotic liquid crystals (DLCs) on thin films of photo-cross-linkable polymers with cinnamoyl moieties as the side chains. Oblique irradiation of the polymer thin films with nonpolarized UV light at 313 nm brought about inclined orientation of the cinnamoyl residues as a result of their direction-selective photoisomerization and photodimerization. The DLC molecules on the photoirradiated polymer films were aligned in a tilted hybrid manner. This means that the DLC directors are continuously altered from the substrate to the DLC film surface so as to minimize the elastic free energy. Interestingly, we found that the tilted direction of aligned DLC molecules is clearly influenced by the chemical structures of the cinnamate-containing polymers. When a poly(vinyl cinnamate) thin film was obliquely exposed to nonpolarized UV light, the DLCs were inclined to the direction opposite to the UV light propagation. In a keen contrast, the thin film of poly(methacrylate)s tethering cinnamoyl groups, which was obliquely exposed to nonpolarized UV light in advance, provided the tilting DLC direction in parallel with the light propagation. The results were supported by tilted orientation of calamitic (rod-shaped) liquid crystal on the obliquely irradiated polymer films. Such photoalignment behavior of the DLCs can be rationalized by anchoring balance between intermolecular interaction of the DLC molecules with the photodimers of polymer films and those with the remaining E-isomers of cinnamoyl side chains at the film interface. The present technique of DLC photoalignment opens promising ways not only to understand anisotropic physical properties of DLCs, but also to design and fabricate novel nanodevices for photonics and electronics applications.  相似文献   

4.
Racemic and highly enantioenriched 3-methoxycarbonyl, 3-carboxy, and 3-hydroxymethyl derivatives of dibenzo[6]helicene were prepared. The Langmuir layers of these helicenes were formed at the air–water interface and transferred onto solid substrates to afford Langmuir–Blodgett films, which were then studied by ambient atomic force microscopy and (chir)optical spectroscopy. Significant differences were found in the behaviour of the Langmuir layers as well as in the morphology, UV/Vis, electronic circular dichroism (ECD), and fluorescence spectra of the Langmuir–Blodgett thin films depending on the molecular chirality and nature of the polar group. The experimental results were supported by molecular dynamics simulations.  相似文献   

5.
Indu Bala 《Liquid crystals》2016,43(7):963-971
A facile synthesis of a novel covalently linked disc–rod mesogen is reported consisting of a truxene-based core attached to which are six 4-cyanobiphenyl units via flexible alkyl spacers. The compound formed a stable Langmuir monolayer at the air–water interface. The atomic force microscope study on the Langmuir–Blodgett film of the molecule reveals a tilted orientation at air–solid interfaces.  相似文献   

6.
This paper describes a simple strategy for the formation of photoaligned and micropatterned discotic liquid crystal (DLC) film on the surface of photoirradiated azobenzene-containing polymer thin film. The key material for the surface-mediated photoalignment of the DLCs was poly[4-(4-cyanophenylazo)phenyl methacrylate] (pMAzCN). Optical anisotropy was generated in a pMAzCN film by oblique exposure to nonpolarized light which resulted in angle-selective photoisomerization and reorientation of the azobenzenes. Subsequent annealing of the film at 240 degrees C enhanced the photoaligned state of the p-cyanoazobenzenes due to strong intermolecular dipole-dipole interaction and semicrystalline nature of the pMAzCN. This combination of photoirradiation and subsequent annealing of the pMAzCN film made it possible to realize the surface-assisted orientation control of a DLC molecule, which displays both columnar (Col) and discotic nematic (N(D)) phases over 152 degrees C. When the pMAzCN film was exposed to linearly polarized light from the surface normal, the DLC molecules showed homeotropic orientation with the director perpendicular to the substrate surface. In the contrast, oblique irradiation of the pMAzCN film with nonpolarized light gave rise to tilted DLC orientation with well-ordered optical birefringence at the N(D) phase. Rapid cooling from the N(D) phase produced a well-aligned glassy N(D) state at room temperature, which was adequately stable for 10 months even though no covalent cross-linking among the DLCs was performed. The spatial orientation of photoaligned DLCs in both their bulk film and in their interface region was characterized by means of optical birefringence, X-ray diffraction, and fluorescence measurements. At the N(D) phase, the DLC molecules were aligned in a hybrid manner such that their tilt angles varied throughout the thickness of DLC film. The direction of tilted DLCs was opposite to the propagation of the actinic nonpolarized light. The photoaligned DLC films exhibited polarized fluorescence emission with an s-polarized/p-polarized intensity ratio of 4.1, despite the nonpolarized excitation of only DLC at outmost surface. These results indicate that the three-dimensionally aligned azobenzene moieties of the pMAzCN thin film were transferred to the tilted DLC molecules at air/DLC interface. Finally, we demonstrated micrometer-scale photopatterned orientation of DLC molecules on the pMAzCN surface by oblique nonpolarized irradiation of the film through a photomask.  相似文献   

7.
《Chemphyschem》2003,4(1):67-71
Correlation of molecular organization in crystals and in ultrathin films is of fundamental interest in the design of molecular materials based on thin films. We have chosen as a test case, N‐(2,4‐dinitrophenyl)‐n‐octadecylamine (DNPOA), a potential candidate for the fabrication of Langmuir–Blodgett (LB) films for quadratic nonlinear optical applications. Like several other 4‐nitroaniline derivatives, DNPOA does not form stable monolayers at the air–water interface. This has precluded investigations of their organization in LB films. We have stabilized composite Langmuir films of DNPOA with the phospholipid molecule DSPC and fabricated their LB films. Successful growth of single crystals of DNPOA allowed structure determination and detailed analysis of molecular associations in the solid state. Electronic absorption spectra of DNPOA in solution, in the solid state and in the LB film are investigated. Modeling of the various spectral signatures by semiempirical computations on molecular clusters extracted from the crystal lattice provides insight into the correlation between the molecular organization in crystals and in LB films.  相似文献   

8.
《Supramolecular Science》1998,5(5-6):679-682
The Langmuir–Blodgett (LB) films built from the mixture of an amphiphilic push–pull ferrocene derivative (P) and behenic acid were investigated. Langmuir films of P diluted by behenic acid exhibit a very good cohesion and the mixed films can easily be transferred onto solid substrates. Linear dichroism UV-visible and IR spectroscopy measurements of the mixed LB multilayers confirm that the molecules (P) are oriented to the substrate. The nonlinear optical experiments on the mixed monolayer deposited on the CaF2 slide showed that P displayed efficient optical second harmonic generation (SHG) with a molecular hyperpolarizability (β) as high as 6.0×10-29 e.s.u.  相似文献   

9.
ABSTRACT

The Langmuir monolayer is a special class of lyotropic liquid crystalline system wherein phase transition essentially depends on surface density, temperature and ion-content in the aqueous medium. The variety of surface phases can be transferred onto devices by the Langmuir–Blodgett (LB) technique. The Langmuir monolayer of pristine single-walled carbon nanotubes (SWCNTs) exhibited gas and liquid-like phases. The LB film of SWCNTs shows target surface pressure dependent interesting morphologies. The methane gas sensing using parallel alignment of SWCNTs was found to be better than that of randomly oriented SWCNTs. The SWCNTs can be functionalised chemically to enhance the ease of film processability and affinity towards analytes. These are essential parameters for the development of a sensor. In this article, we present our work on Langmuir monolayer and LB films of octadecylamine functionalised SWCNTs (ODACNTs) and its sensing application towards bio-analytes, e.g. L-aspartic acid and bovine serum albumin. The sensing performance of LB film of ODACNTs was compared with that of spin-coated films of ODACNTs. The sensing performance of LB films of ODACNTs indicated a potential platform for bio-sensing application.  相似文献   

10.
Polyhedral oligomeric silesquioxanes (POSS) with eight polyether substituents were mixed with the liquid crystal (LC) 4-octyloxy-4′-cyanobiphenyl and spread at the air/water interface. The surface pressure-area and surface potential-area isotherms were recorded for different weight ratios of both components. The obtained results showed that POSS molecules had beneficial influence on LC monolayer improving its stability and rigidity. Moreover, it was found that some LC–POSS mixtures collapse reversibly and form multilayer films on the top of LC monolayer. On the other hand, interfacial dilatational and shear rheology indicated decrease of elasticity of the films after mixing. Brewster angle microscopy revealed multilayer structure of the condensed film and formation of net-like structures in the expanded film. These films were successfully transferred on solid substrates using the Langmuir–Blodgett technique. The scanning electron microscopy images confirmed the film deposition and formation of networks by POSS–LC mixtures. These findings may be useful in the fabrication of electronic devices based on LCs.  相似文献   

11.
《Polyhedron》2007,26(9-11):1871-1875
Magnetic Langmuir–Blodgett films of ferritin have been prepared by using the adsorption properties of a 1/4 mixed monolayer of eicosylamine (EA) and methyl stearate (SME). BAM images show that a more homogeneous distribution of ferritin at the air–water interface is achieved by using this mixture of surfactants instead of the DODA/SME mixed matrix of a previous work. Transfer of the monolayer onto different substrates allowed the preparation of multilayer LB films. Infrared and UV–Vis spectroscopies indicate that ferritin molecules are incorporated within the LB films. Furthermore, UV–Vis spectroscopy measurements reveal that the amount of ferritin incorporated into these LB film has been increased with respect to that in the DODA/SME LB films. Finally magnetic measurements confirm that the superparamagnetic properties of this molecule are preserved in the LB films.  相似文献   

12.
The structure formation of wedge-shaped monodendrons based on symmetric benzenesulfonic acid with different lengths of peripheral alkyl chains was studied in Langmuir monolayers and Langmuir–Blodgett (LB) films. A phase transition from the liquid-expanded state to the liquid-condensed state was observed on compression of the Langmuir monolayers of the dendrons containing dodecyl lateral chains. The transition is accompanied by the formation of star-shaped aggregates visualized by Brewster angle microscopy. The three-layer LB transfer results in the reorganization of the monolayer into regions of bi-, tetra-, and hexalayers on a solid substrate with a low coverage of the surface. Homogeneous liquid-condensed mono layers are formed for the dendrons with hexa- and octadecyl chains, and the film thickness achieved by the LB transfer corresponds to the monolayer alignment of the molecules with the surface coverage up to 90%. It was determined that varying the alkyl length of wedge-shaped dendrones based on symmetric benzenesulfonic acid leads to a change in phase behavior of Langmuir monolayers as well as Langmuir–Blodgett films formed by them.  相似文献   

13.
Control of molecular orientation at the substrate surface is significant to understand the surface science. Langmuir films of bent-core liquid crystals having alkyl chains at both ends were deposited on silicon substrate. Studies were carried out on air–water interface by changing pH of the subphase. On compression, molecules were arranged in stacks at high pH where as uniform monolayer was formed at lower pH. Limiting area increased at low pH, which resulted in the formation of monolayer after attaining a sustainable surface pressure. Langmuir films were transferred to silicon substrate, and atomic force microscopy images showed appropriate height profiles.  相似文献   

14.
We have investigated the synthesis and ultrathin film forming properties of α,ω‐diamine derivatives. The amphiphiles were synthesized as precursors to the formation of ionene polymers. Two materials were investigated: oligothiophene and azobenzene functional groups. These type of materials are of great interest for the preparation of ultrathin film layers with applications for photochemical regulation of liquid crystal (LC) orientation, optical storage media, and electroluminescent displays. Azobenzene and its derivatives are well known photochemical systems exhibiting the reversible cis‐trans photoisomerization. Conjugated oligothiophene derivatives, exhibit interesting optical and electronic properties for applications such as light emitting diodes (LED)s, Schottky diodes, and thin film field‐effect transistors (TFT). The two amphiphiles behaved very differently as Langmuir monolayers and LB films. Dye aggregation was observed with the azobenzene derivatives compared with the oligothiophenes.  相似文献   

15.
《Chemical physics letters》2003,367(1-2):193-198
Monolayers of Schiff bases derived from ethylene diamine and o-phenylene diamine with p-nitro cinnamaldehyde, (compounds 1 and 2) at air/water interface have been studied. Photolysis of 1 in chloroform solution undergoes cistrans isomerization on irradiation of white light while compound 2 does not undergo isomerization under photolytic conditions. The photolysis of 1 and 2 in Langmuir–Blodgett films (LB films) transferred to quartz plates form dimers. The change in product distribution is attributed to the influence of bridging group of the cinnamaldehyde moieties, molecular configuration and mobility of the compounds in solution, solid state and the aggregation of molecules in monolayer assemblies.  相似文献   

16.
A new class of dendritic amphiphiles with multi‐hydrophilic head groups has been synthesized and characterized. The results from their surface pressure vs. area isotherms and hysteresis curves indicate that they form highly compressible and stable monolayers at the air‐water interface. The topology of dendritic monolayer and Langmuir‐Blodgett films was investigated by atomic force microscopy, which showed a highly ordered aggregation.  相似文献   

17.
The capability of self-assembly and molecular recognition of biomolecules is essential for many nanotechnological applications, as in the use of alkyl-modified nucleosides and oligonucleotides to increase the cellular uptake of DNA and RNA. In this study, we show that a lipophilic nucleoside, which is an isomer mixture of 2′-palmitoyluridin und 3′-palmitoyluridin, forms Langmuir monolayers and Langmuir–Blodgett films as a typical amphiphile, though with a smaller elasticity. The nucleoside may be incorporated into dipalmitoyl phosphatidyl choline (DPPC) monolayers that serve as a simplified cell membrane model. The molecular-level interactions between the nucleoside and DPPC led to a remarkable condensation of the mixed monolayer, which affected both surface pressure and surface potential isotherms. The morphology of the mixed monolayers was dominated by the small domains of the nucleoside. The mixed monolayers could be deposited onto solid substrates as a one-layer Langmuir Blodgett film that displayed UV–vis absorption spectra typical of aggregated nucleosides owing to the interaction between the nucleoside and DPPC. The formation of solid films with DNA building blocks in the polar heads may open the way for devices and sensors be produced to exploit their molecular recognition properties.  相似文献   

18.
《Supramolecular Science》1998,5(1-2):75-81
Composite monolayers of cadmium stearate and polyaniline processed with camphor sulphonic acid have been obtained at the air–water interface and subsequently transferred onto substrates as uniform Langmuir–Blodgett multilayers. Pressure–area (Π-A) isotherm studies indicated that polyaniline molecules are not squeezed out of the cadmium stearate matrix during compression or in the compressed state. Monolayer stability is seen to decrease when the polymer content is increased beyond 60% (in weight) which is probably associated with the formation of microaggregates that also affected the monolayer surface potential at large areas per molecule. With increasing amount of polyaniline in the mixture, a transition from Y-type to Z-type deposition has been observed. Transferred multilayer LB films were characterized by UV-vis, FTIR, XRD, surface potential, and dc electrical conductivity measurements. UV-vis results indicated that though the polyaniline was in the doped state in the spreading solution, the transferred films were in the emeraldine base state. FTIR studies revealed that the transferred films mainly contained cadmium stearate salt in addition to polyaniline. XRD results indicated that the stacking order is dependent on the polyaniline content in the composite films, the order was found to decrease upon increasing the polymer amount. The uniformity of transferred films was confirmed by surface potential studies. A possible packing arrangement in these composite Langmuir and Langmuir–Blodgett films has been proposed.  相似文献   

19.
Present communication reports the preparation of Langmuir monolayer of water-soluble anionic dye Congo red (CR) by allowing it to adsorb from the aqueous subphase onto the preformed Langmuir monolayer of anionic stearic acid using divalent metal cations Mg2+ as mediator. Isotherm and compressibility studies of SA-Mg-CR hybrid monolayer gave valuable information about the molecular organisation in the Langmuir monolayer. Absorption spectroscopic studies revealed the formation of H-aggregates in the hybrid Langmuir–Blodgett (LB) films fabricated at lower salt concentration in the subphase. Atomic Force Microscopic image gave visual evidence of distinct nanocrystalline domains in the LB monolayer film.  相似文献   

20.
The Langmuir monolayer at an air–water interface shows remarkably different surface pressure (π)–area (A) isotherm, when measured with the surface normal of a Wilhelmy plate parallel or perpendicular to the direction of compression of the monolayer. Such difference arises due to difference in stress exerted by the monolayer on the plate in different direction. In this article, we report the effect of changing the direction of substrate normal with respect to the compression of the monolayer during Langmuir–Blodgett (LB) film deposition on the morphology of the films. The morphology of the LB film of stearic acid is studied using an atomic force microscope. The morphology of the LB films is found to be different due to difference in the stress in different directions. The role of such surface morphology on the alignment of a nematic liquid crystal (LC) in LC cells is studied. The granular texture of LB films of stearic acid supports the homogeneous alignment of the LC whereas the uniform texture supports the homeotropic alignment of the LC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号