首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The guanidine group-modified silica particles were used as emulsifier to obtain a CO2-responsive Pickering emulsion. To compare the wettability effect of the particles on the stability of the emulsion, both guanidine and alkyl chain were attached on the surface of silica particles. The influences of tension, particles concentration, oil-water fraction, NaCl concentration, and CO2 on Pickering emulsion properties were investigated. Although the particles did not decrease the surface and interfacial tensions of the air/oil-water interfaces, they attached on the oil–water interfaces and stabilized the emulsions at room temperature for at least 4 weeks. Addition of salt increased the emulsion stability and induced phase inversion at high salt concentration. The stabilization–destabilization cycles of the emulsion could be successively controlled by alternative CO2/heating triggers due to the protonation-deprotonation of guanidine groups on the particle surfaces.  相似文献   

2.
An attempt to evaluate the kinetically effective critical micelle concentration CMC of sodium dodecyl sulfate (SDS) in micellar solutions and in O/W emulsions at 40°C and pH 9 utilizing the pseudo first order rate constant of benzyl acetate hydrolysis was implemented. The critical micelle concentration of SDS in micellar solutions was determined by both surface tension measurements utilizing Wilhelmy plate technique and by rate constant of hydrolysis. Hydrolysis reaction of benzyl acetate was monitored in surfactant solutions as well as in o/w emulsions as a function of time. Emulsion droplets were controlled using microfluidizer 110 T and oily droplets were separated from the emulsion by ultracentrifugation at (11,500 rpm or 9,800 g) prior to analysis by high performance liquid chromatography. The value of the critical micelle concentration (CMC) in micellar solutions in the presence of benzyl acetate as determined from the Wilhelmy plate technique was 7.8 × 10?4 moles/L (CMC in micellar solution was 10 times lower than the value in literature due to use of buffer) while the CMC as determined from the kinetic study was 8.8 × 10?4 moles/L. In emulsion systems, using 5% mineral oil, the CMC value was 8.6 × 10?3 moles/L and at 10% oil, the value doubled to 1.73 × 10?2 moles/L. The above results indicate that kinetics can be used to determine CMC in micellar solutions and in o/w emulsions.  相似文献   

3.
基于两相分离的乳状液稳定模型,研究了三元复合驱模拟原油乳状液稳定动力学特性;通过液膜强度和油水界面张力探讨了碱/表面活性剂/聚合物对模拟原油乳状液稳定动力学特性的影响机理。 结果表明,乳状液稳定模型可以很好的评价乳状液的稳定性,并得到乳状液的稳定动力学特性;碱浓度小于900 mg/L有利于乳状液的稳定,碱浓度大于900 mg/L不利于乳状液的稳定;表面活性剂和聚合物浓度的增加使得形成的模拟原油乳状液更加稳定;模拟原油乳状液的稳定作用主要是通过碱、表面活性剂降低油水界面张力并增加油水界面膜强度,聚合物通过提高界面膜强度实现的,三者存在协同效应。  相似文献   

4.
To find an optimal formulation of oil-in-water (O/W) emulsions (φo = 0.05), the effect of emulsifier nature and concentration, agitation speed, emulsifying time, storage temperature and their mutual interactions on the properties and behavior of these dispersions is evaluated by means of an experimental design (Nemrodw software). Long-term emulsion stability is monitored by multiple light scattering (Turbiscan ags) and acoustic attenuation spectroscopy (Ultrasizer). After matching surfactant HLB and oil required HLB, a model giving the Sauter diameter as a function of emulsifier concentration, agitation speed and emulsification time is proposed. The highest stability of C12E4-stabilized O/W emulsions is observed with 1% emulsifier.  相似文献   

5.
Oligomeric surfactants display the novel properties of low surface activity, low critical micellar concentration and enhanced viscosity, but no CO2 switchable oligomeric surfactants have been developed so far. The introduction of CO2 can convert tertiary amine reversibly to quaternary ammonium salt, which causes switchable surface activity. In this study, epoxidized soybean oil was selected as a raw material to synthesize a CO2-responsive oligomeric surfactant. After addition and removal of CO2, the conductivity analyzing proves that the oligomeric surfactant had a good response to CO2 stimulation. The viscosity of the oligomeric surfactant solution increased obviously after sparging CO2, but returned to its initial low viscosity in the absence of CO2. This work is expected to open a new window for the study of bio-based CO2-stimulated oligomeric surfactants.  相似文献   

6.
Some factors in the preparation of triple Janus emulsions in a single-step bulk process were investigated using optical microscopy. The emulsions consisted of water, O.097 weight fraction, a commercial surfactant, Tween 80, 0.03 weight fraction, a vegetable oil (VO), 0.18 weight fraction, and a silicone oil (SO), 0.72 weight fraction. A surprising connection was found between the state of the compounds prior to mixing and the final morphology as well as stability of the emulsion. Separately adding the compounds or with the surfactant dissolved in the vegetable oil, prior to mixing, did not result in a Janus emulsion. Instead, simpler emulsions with limited stability were attained even with prolonged mixing. Storing the compounds together without mixing for two days followed by mixing resulted in a Janus emulsion in which the (VO + SO)/W/VO drops were more sparsely populated with Janus drops, and emulsion stability was limited. Finally, preparing the emulsion from the aqueous surfactant solution and the two oils gave a (VO + SO)/W/VO/SO emulsion with the W drops heavily populated by Janus drops and with improved stability.   相似文献   

7.
The stability and curvature of emulsions of H2O and CO2 are reported and analyzed in terms of measurements of interfacial tension versus formulation variables, including salinity, CO2 density, temperature and pH. Among the surfactants studied are, quaternary ammonium cationic ones with perfluoropolyether tails, block copolymer ionomers and a poly (hydroxyethyl methacrylate) with polydimethylsiloxane tails, and a nonionic ethylene oxide surfactant with a fluoroalkane tail. The interfacial tension measurements were made at surfactant concentrations from 0.05 to 1.0 wt% with a variable-volume pendant drop tensiometer up to 345 bar and 363°K. As a formulation variable was varied, the system reached a balanced state characterized by a minimum in interfacial tension, a loss in emulsion stability and in some cases an inversion from a W/C to C/W emulsion. Here the Marangoni-Gibbs stabilization weakens, and also it becomes easy to bend and rupture the surfactant monolayer, causing coalescence. Except in the case of the nonionic fluorinated surfactant C8F17—SO2NEt-(CH2CH2O)12–14CH3, the crossover from the CO2-continuous (W/C) to the H2O-continuous (C/W) emulsion occurred abruptly due to clouding of the surfactant out of the CO2 phase. For PFPE-TMAA, the plot of γ versus surfactant concentration revealed both pre-micellar aggregates and a critical micro emulsion, each of which was dependent on salinity.  相似文献   

8.
In order to improve stability and reduce droplet size, the PEG-modified urethane acrylates were synthesized by the reaction of polyethylene glycol (PEG) with residual isocyanate groups of urethane acrylate to incorporate hydrophilic groups into the molecular ends. The droplet sizes of the PEG-modified urethane acrylate emulsions were much smaller than those of unmodified urethane acrylate emulsions at the same surfactant composition, and the droplet sizes of these emulsions were significantly effected not by surfactant compositions and types, but by the reaction molar ratio of PEG, because the urethane acrylate containing polyoxyethylene groups as terminal groups aided the interfacial activity of surfactant molecules and acted as a polymeric surfactant. The actions of PEG-modified urethane acrylate were confirmed by the investigation of adsorption of urethane acrylate in a water/benzene interface.For polymerization of emulsions, the stability of emulsion in the process of emulsion polymerization was changed by the type of surfactant or initiator. In the case of emulsion polymerization with a water soluble initiator (K2S2O8), the emulsions prepared using TWEEN 60 were broken in the process of polymerization. However, polymerization of these emulsions could be carried out using an oil soluble initiator (AIBN). The conversion of emulsion polymerization changed with the type of urethane acrylates, that is, the reaction molar ratio of PEG to 2-HEMA.  相似文献   

9.
We have developed a new benign means of reversibly breaking emulsions and latexes by using “switchable water”, an aqueous solution of switchable ionic strength. The conventional surfactant sodium dodecyl sulfate (SDS) is not normally stimuli‐responsive when CO2 is used as the stimulus but becomes CO2‐responsive or “switchable” in the presence of a switchable water additive. In particular, changes in the air/water surface tension and oil/water interfacial tension can be triggered by addition and removal of CO2. A switchable water additive, N,N‐dimethylethanolamine (DMEA), was found to be an effective and efficient additive for the reversible reduction of interfacial tension and can lower the tension of the dodecane/water interface in the presence of SDS surfactant to ultra‐low values at very low additive concentrations. Switchable water was successfully used to reversibly break an emulsion containing SDS as surfactant, and dodecane as organic liquid. Also, the addition of CO2 and switchable water can result in aggregation of polystyrene (PS) latexes; the later removal of CO2 neutralizes the DMEA and decreases the ionic strength allowing for the aggregated PS latex to be redispersed and recovered in its original state.  相似文献   

10.
We fabricated mesoporous hybrid dual-metal Co and Fe containing metallic organic framework (Co/Fe-MOF), Fe-MOF, and Co-MOF in the ionic liquid (IL)/supercritical CO2 (SC)/surfactant emulsion system, and then studied the electrochemical properties of the three MOFs systematically.  相似文献   

11.
The objective of the current study was to evaluate long-term stability of emulsions with rice oil by assessing their physical properties. For this purpose, six emulsions were prepared, their stability was examined empirically, and the most correctly formulated emulsion composition was determined using a computer simulation. Variable parameters (oil and thickener content) were indicated with optimization software based on Kleeman's method. Synthesized emulsions were studied by numerous techniques involving determination of particle size and distribution of emulsion, optical microscopy, viscosity, and novelty analysis—Turbiscan test.

The emulsion containing 50 g of oil and 1.2 g of thickener had the highest stability. Empirically determined parameters proved to be consistent with the results obtained using the computer software. The computer simulation showed that the most stable emulsion should contain from 35.93 to 50 g of oil and 0.94 to 1.19 g of thickener. The computer software based on Kleeman's method proved to be useful for fast optimization of the composition and providing parameters of stable emulsion systems. Forming emulsions based on rice oil is a chance to introduce a new, interesting representative of functional food as well as a cosmetic product.  相似文献   

12.
Owing to the high acid number of Xinjiang heavy oil and incomplete demulsification after pipelining, this article discusses the application of CO2-triggered switchable surfactants to the emulsified transport of several Xinjiang heavy oils in the pipeline. Results show that CO2-triggered switchable surfactants promote the formation and stabilization of oil-in-water (O/W) emulsion in the absence of CO2 as a base. The property parameters of heavy oils fundamentally influence the indigenous emulsifying agents. The emulsion is stable when the heavy oil has a high acid number and low asphaltene content, which is also affected by some physical factors.  相似文献   

13.
Recently, several investigations have been carried out on the in situ bacteria flooding, but the ex situ biosurfactant production and addition to the sand pack as agents for microbial enhanced oil recovery (MEOR) has little been studied. In order to develop suitable technology for ex situ MEOR processes, it is essential to carry out tests about it. Therefore, this work tries to fill the gap. The intention of this study was to investigate whether the rhamnolipid mix could be produced in high enough quantities for enhanced oil recovery in the laboratory scale and prove its potential use as an effective material for field application. In this work, the ability of Pseudomonas aeruginosa MM1011 to grow and produce rhamnolipid on sunflower as sole carbon source under nitrogen limitation was shown. The production of Rha-C10-C10 and Rha2-C10-C10 was confirmed by thin-layer chromatography and high-performance liquid chromatography analysis. The rhamnolipid mixture obtained was able to reduce the surface and interfacial tension of water to 26 and 2 mN/m, respectively. The critical micelle concentration was 120 mg/L. Maximum rhamnolipid production reached to about 0.7 g/L in a shake flask. The yield of rhamnolipid per biomass (Y RL/x ), rhamnolipid per sunflower oil (Y RL/s ), and the biomass per sunflower oil (Y x/s ) for shake flask were obtained about 0.01, 0.0035, and 0.035 g g?1, respectively. The stability of the rhamnolipid at different salinities, pH and temperature, and also, its emulsifying activity has been investigated. It is an effective surfactant at very low concentrations over a wide range of temperatures, pHs, and salt concentrations, and it also has the ability to emulsify oil, which is essential for enhanced oil recovery. With 120 mg/L rhamnolipid, 27 % of original oil in place was recovered after water flooding from a sand pack. This result not only suggests rhamnolipids as appropriate model biosurfactants for MEOR, but it even shows the potential as a biosurfactant of choice for actual MEOR applications.  相似文献   

14.
Biodegradable polyesters were synthesized via an emulsion polymerization in supercritical carbon dioxide (SC‐CO2). Copolymers of lactide and glycolide were synthesized in SC‐CO2 with stannous octoate as the ring‐opening catalyst and a fluorocarbon polymer surfactant as an emulsifying agent. The conversion of lactide and glycolide was monitored with respect to the reaction time and temperature with 1H NMR spectroscopy. The conversion of glycolide surpassed 99% within 72 h for an SC‐CO2 phase maintained at 200 bar and 70 °C. Under the same conditions, lactide conversion reached 65% after 72 h of polymerization. Unpolymerized monomer was removed after the reaction by extraction with an SC‐CO2 mobile phase. The molecular weights of all the copolymers were measured by gel permeation chromatography. Weight‐average molecular weights (Mw) ranged between 2500 and 30,200 g/mol and polydispersity indices ranged from 1.4 to 2.3 for polymerization times of 6 and 48 h, respectively. Although the molecular weight increased significantly during the first 48 h of reaction, there was no significant difference in the Mw for polymerization times of 48 and 72 h. Emulsion polymerization within the benign solvent SC‐CO2 demonstrated improved conversion and molecular weight versus polymers synthesized without surfactant. The emulsion polymerization of lactide and glycolide copolymers in SC‐CO2 is proposed as a novel production technique for high‐purity, biodegradable polymers. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 562–570, 2001  相似文献   

15.
A facile approach for the preparation of cellulose gel dispersions with particle size less than 5 μm has been developed. The particles were obtained by dissolving cellulose in NaOH/urea solvent, followed by regeneration in ethanol/H2O mixed solution with homogenizer shearing. The characteristics of the cellulose gel dispersions were evaluated in terms of particle dimensions and crystalline structure, size distribution and rheology behavior. The cellulose gel dispersions had low crystallinity, and the concentration of the cellulose solution had little influence on the particle size of the gel dispersions. Furthermore, the cellulose gel dispersions could be well dispersed in deionized water, and they could be used to stabilize oil/water emulsion without addition of any surfactant. The formed Pickering emulsion had typical shear-thinning behavior and higher storage modulus. The concentration of cellulose gel dispersions had a significant influence on the emulsion stability. The Pickering emulsion stabilized by the cellulose gel dispersions would open opportunities for the development of food emulsion systems or environmentally friendly functional materials.  相似文献   

16.
It has been discovered that the size of internal droplets in primary emulsion determines emulsion dispersion and stability in emulsion liquid membrane (ELM) process for removal of lignin from pulping wastewater. Generally, primary emulsion contains kerosene, Aliquat 336, sodium bicarbonate, as well as Span 80 as diluent, carrier, internal phase, and surfactant, respectively. Hence, this study had looked into the parameters, including concentration of surfactant, carrier, and stripping agent; emulsification speed and time; as well as agitation speed and time. As a result, the diameter of the smallest droplets (1.4 µm) was formed with maximum lignin extraction (95%), minimum swelling (5%) at 3% (w/v) surfactant concentration, 12,000 rpm of emulsification within 5 minutes, 0.01 M of Aliquat 336, 0.1 M of NaHCO3, and 250 rpm of extraction within 10 minutes.  相似文献   

17.
The role of multi-wall carbon nanotubes (MWCNT) as a solid surfactant in highly concentrated water-in-oil emulsions was investigated. MWCNT were dispersed in the oil phase. These suspensions are viscoplastic fluids with the yield stress increasing by more than 1000 times with addition of 2% MWCNT, which demonstrates intensive “structurizing” ability. After emulsion preparation, MWCNT were concentrated at the interface, stabilizing emulsions. The dependence of the inversion point on MWCNT concentration was found. Emulsions containing up to 94 wt% of the aqueous phase can be prepared only when MWCNT is combined with conventional surfactant. Rheological properties of such compositions were measured. It was established that emulsions stabilized by a combined surfactant were more stable in comparison to conventional surfactant stabilized emulsion.  相似文献   

18.
CO2-switchable oligomeric surfactants have good viscosity-reducing properties; however, the complex synthesis of surfactants limits their application. In this study, a CO2-switchable “pseudo”-tetrameric surfactant oleic acid (OA)/cyclic polyamine (cyclen) was prepared by simple mixing and subsequently used to reduce the viscosity of heavy oil. The surface activity of OA/cyclen was explored by a surface tensiometer and a potential for viscosity reduction was revealed. The CO2 switchability of OA/cyclen was investigated by alternately introducing CO2 and N2, and OA/cyclen was confirmed to exhibit a reversible CO2-switching performance. The emulsification and viscosity reduction analyses elucidated that a molar ratio of OA/cyclen of 4:1 formed the “pseudo”-tetrameric surfactants, and the emulsions of water and heavy oil with OA/cyclen have good stability and low viscosity and can be destabilized quickly by introducing CO2. The findings reported in this study reveal that it is feasible to prepare CO2-switchable pseudo-tetrameric surfactants with viscosity-reducing properties by simple mixing, thus providing a pathway for the emulsification and demulsification of heavy oil by using the CO2-switchable “pseudo”-oligomeric surfactants.  相似文献   

19.
To study the effects of pre-adsorbed emulsifier on Pickering emulsion stability, the preparation of silicone oil emulsions by TiO2 suspensions pre-adsorbed sodium dodecyl sulfate (SDS) at the fixed TiO2 concentration of 0.15 g was carried out below a fiftieth of critical micelle concentration (cmc) of SDS, where all added amounts of SDS are adsorbed on the TiO2 particles. The stability of the Pickering emulsions incorporating TiO2 suspensions pre-adsorbed SDS was investigated by measuring the volume fraction of emulsified silicone oil, adsorbed amounts of TiO2 suspensions pre-adsorbed SDS, oil droplet size, and some rheological responses such as the stress-strain sweep curve and strain and frequency dependences of dynamic viscoelastic moduli. The silicone oil was almost emulsified by TiO2 suspensions pre-adsorbed SDS above cmc/103. Increasing in the adsorbed amount of SDS on the TiO2 particles leads to an increase in the adsorbed amounts of TiO2 suspensions pre-adsorbed SDS. Such silicone oil emulsions for the first time showed two yield stresses in the stress-strain sweep curve as well as the oscillatory stress-strain curve. The respective yield stresses also increase with an increase in the adsorbed amounts of TiO2 suspensions pre-adsorbed SDS. From such characteristic rheological properties and a partial sedimentation of some TiO2 particles remained in the dispersion medium, we proposed the formation of a three dimensional network of the flocculated TiO2 particles pre-adsorbed SDS on the silicone oil droplets.  相似文献   

20.
The structure transitions of the aggregates in the sodium oleate (NaOA)/N-(3-(dimethylamino)propyl)-octanamide (DPOA) aqueous system was investigated upon CO2 stimuli. During the process of bubbling of CO2, three appearance states of sol, gel, and emulsion with little white precipitate were observed continuously. The cryo-transmission electron microscope characterization and rheological measurements exhibited that the sol–gel transition was attributed to a spherical-wormlike micelle transition. Moreover, this transition was switchable at least three cycles in the pH range of 10.91–9.56 by CO2 stimuli and pH regulation (adding NaOH), which could be explained by the protonation of DPOA and deprotonation of DPOA · H+. Bubbling of CO2 resulted in protonation of DPOA, which not only inserted into the OA as a co-surfactant but also screened the electrostatic repulsion among OA, corporately leading to the spherical-wormlike micelle transition. Adding NaOH caused the deprotonation of DPOA · H+ and hence reversed this transition. This surfactant system with switchable micelle transition not only displays tremendous application potential in various fields but also is of key importance in cyclic utilization of surfactant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号