首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 803 毫秒
1.
Patrick Mehlitz 《Optimization》2017,66(10):1533-1562
We consider a bilevel programming problem in Banach spaces whose lower level solution is unique for any choice of the upper level variable. A condition is presented which ensures that the lower level solution mapping is directionally differentiable, and a formula is constructed which can be used to compute this directional derivative. Afterwards, we apply these results in order to obtain first-order necessary optimality conditions for the bilevel programming problem. It is shown that these optimality conditions imply that a certain mathematical program with complementarity constraints in Banach spaces has the optimal solution zero. We state the weak and strong stationarity conditions of this problem as well as corresponding constraint qualifications in order to derive applicable necessary optimality conditions for the original bilevel programming problem. Finally, we use the theory to state new necessary optimality conditions for certain classes of semidefinite bilevel programming problems and present an example in terms of bilevel optimal control.  相似文献   

2.
In this article, we consider a general bilevel programming problem in reflexive Banach spaces with a convex lower level problem. In order to derive necessary optimality conditions for the bilevel problem, it is transferred to a mathematical program with complementarity constraints (MPCC). We introduce a notion of weak stationarity and exploit the concept of strong stationarity for MPCCs in reflexive Banach spaces, recently developed by the second author, and we apply these concepts to the reformulated bilevel programming problem. Constraint qualifications are presented, which ensure that local optimal solutions satisfy the weak and strong stationarity conditions. Finally, we discuss a certain bilevel optimal control problem by means of the developed theory. Its weak and strong stationarity conditions of Pontryagin-type and some controllability assumptions ensuring strong stationarity of any local optimal solution are presented.  相似文献   

3.
S. Dempe  P. Mehlitz 《Optimization》2018,67(6):737-756
In this article, we consider bilevel optimization problems with discrete lower level and continuous upper level problems. Taking into account both approaches (optimistic and pessimistic) which have been developed in the literature to deal with this type of problem, we derive some conditions for the existence of solutions. In the case where the lower level is a parametric linear problem, the bilevel problem is transformed into a continuous one. After that, we are able to discuss local optimality conditions using tools of variational analysis for each of the different approaches. Finally, we consider a simple application of our results namely the bilevel programming problem with the minimum spanning tree problem in the lower level.  相似文献   

4.
In this paper, we study a semi-infinite programming (SIP) problem with a convex set constraint. Using the value function of the lower level problem, we reformulate SIP problem as a nonsmooth optimization problem. Using the theory of nonsmooth Lagrange multiplier rules and Danskin’s theorem, we present constraint qualifications and necessary optimality conditions. We propose a new numerical method for solving the problem. The novelty of our numerical method is to use the integral entropy function to approximate the value function and then solve SIP by the smoothing projected gradient method. Moreover we study the relationships between the approximating problems and the original SIP problem. We derive error bounds between the integral entropy function and the value function, and between locally optimal solutions of the smoothing problem and those for the original problem. Using certain second order sufficient conditions, we derive some estimates for locally optimal solutions of problem. Numerical experiments show that the algorithm is efficient for solving SIP.  相似文献   

5.
We consider the bilevel programming problem and its optimal value and KKT one level reformulations. The two reformulations are studied in a unified manner and compared in terms of optimal solutions, constraint qualifications and optimality conditions. We also show that any bilevel programming problem where the lower level problem is linear with respect to the lower level variable, is partially calm without any restrictive assumption. Finally, we consider the bilevel demand adjustment problem in transportation, and show how KKT type optimality conditions can be obtained under the partial calmness, using the differential calculus of Mordukhovich.  相似文献   

6.
A penalty function method for solving inverse optimal value problem   总被引:2,自引:0,他引:2  
In order to consider the inverse optimal value problem under more general conditions, we transform the inverse optimal value problem into a corresponding nonlinear bilevel programming problem equivalently. Using the Kuhn–Tucker optimality condition of the lower level problem, we transform the nonlinear bilevel programming into a normal nonlinear programming. The complementary and slackness condition of the lower level problem is appended to the upper level objective with a penalty. Then we give via an exact penalty method an existence theorem of solutions and propose an algorithm for the inverse optimal value problem, also analysis the convergence of the proposed algorithm. The numerical result shows that the algorithm can solve a wider class of inverse optimal value problem.  相似文献   

7.
Motivated by our recent works on optimality conditions in discrete optimal control problems under a nonconvex cost function, in this paper, we study second-order necessary and sufficient optimality conditions for a discrete optimal control problem with a nonconvex cost function and state-control constraints. By establishing an abstract result on second-order optimality conditions for a mathematical programming problem, we derive second-order necessary and sufficient optimality conditions for a discrete optimal control problem. Using a common critical cone for both the second-order necessary and sufficient optimality conditions, we obtain “no-gap” between second-order optimality conditions.  相似文献   

8.
First-Order Optimality Conditions in Generalized Semi-Infinite Programming   总被引:4,自引:0,他引:4  
In this paper, we consider a generalized semi-infinite optimization problem where the index set of the corresponding inequality constraints depends on the decision variables and the involved functions are assumed to be continuously differentiable. We derive first-order necessary optimality conditions for such problems by using bounds for the upper and lower directional derivatives of the corresponding optimal value function. In the case where the optimal value function is directly differentiable, we present first-order conditions based on the linearization of the given problem. Finally, we investigate necessary and sufficient first-order conditions by using the calculus of quasidifferentiable functions.  相似文献   

9.
Penalty methods are very efficient in finding an optimal solution to constrained optimization problems. In this paper, we present an objective penalty function with two penalty parameters for inequality constrained bilevel programming under the convexity assumption to the lower level problem. Under some conditions, an optimal solution to a bilevel programming defined by the objective penalty function is proved to be an optimal solution to the original bilevel programming. Moreover, based on the objective penalty function, an algorithm is developed to obtain an optimal solution to the original bilevel programming, with its convergence proved under some conditions.  相似文献   

10.
The present paper is devoted to the computation of optimal tolls on a traffic network that is described as fuzzy bilevel optimization problem. As a fuzzy bilevel optimization problem we consider bilinear optimization problem with crisp upper level and fuzzy lower level. An effective algorithm for computation optimal tolls for the upper level decision-maker is developed under assumption that the lower level decision-maker chooses the optimal solution as well. The algorithm is based on the membership function approach. This algorithm provides us with a global optimal solution of the fuzzy bilevel optimization problem.  相似文献   

11.
The paper is concerned with the optimistic formulation of a bilevel optimization problem with multiobjective lower-level problem. Considering the scalarization approach for the multiobjective program, we transform our problem into a scalar-objective optimization problem with inequality constraints by means of the well-known optimal value reformulation. Completely detailed first-order necessary optimality conditions are then derived in the smooth and nonsmooth settings while using the generalized differentiation calculus of Mordukhovich. Our approach is different from the one previously used in the literature and the conditions obtained are new. Furthermore, they reduce to those of a usual bilevel program, if the lower-level objective function becomes single-valued.  相似文献   

12.
ABSTRACT

We consider bilevel optimization problems which can be interpreted as inverse optimal control problems. The lower-level problem is an optimal control problem with a parametrized objective function. The upper-level problem is used to identify the parameters of the lower-level problem. Our main focus is the derivation of first-order necessary optimality conditions. We prove C-stationarity of local solutions of the inverse optimal control problem and give a counterexample to show that strong stationarity might be violated at a local minimizer.  相似文献   

13.
The penalty function method, presented many years ago, is an important numerical method for the mathematical programming problems. In this article, we propose a dual-relax penalty function approach, which is significantly different from penalty function approach existing for solving the bilevel programming, to solve the nonlinear bilevel programming with linear lower level problem. Our algorithm will redound to the error analysis for computing an approximate solution to the bilevel programming. The error estimate is obtained among the optimal objective function value of the dual-relax penalty problem and of the original bilevel programming problem. An example is illustrated to show the feasibility of the proposed approach.  相似文献   

14.
We consider a control problem with reflecting boundary and obtain necessary optimality conditions in the form of the maximum Pontryagin principle. To derive these results we transform the constrained problem in an unconstrained one or we use penalization techniques of Morreau-Yosida type to approach the original problem by a sequence of optimal control problems with Lipschitz dynamics. Then nonsmooth analysis theory is used to study the convergence of the penalization in order to obtain optimality conditions.  相似文献   

15.
Global solution of bilevel programs with a nonconvex inner program   总被引:3,自引:1,他引:2  
A bounding algorithm for the global solution of nonlinear bilevel programs involving nonconvex functions in both the inner and outer programs is presented. The algorithm is rigorous and terminates finitely to a point that satisfies ε-optimality in the inner and outer programs. For the lower bounding problem, a relaxed program, containing the constraints of the inner and outer programs augmented by a parametric upper bound to the parametric optimal solution function of the inner program, is solved to global optimality. The optional upper bounding problem is based on probing the solution obtained by the lower bounding procedure. For the case that the inner program satisfies a constraint qualification, an algorithmic heuristic for tighter lower bounds is presented based on the KKT necessary conditions of the inner program. The algorithm is extended to include branching, which is not required for convergence but has potential advantages. Two branching heuristics are described and analyzed. Convergence proofs are provided and numerical results for original test problems and for literature examples are presented.  相似文献   

16.
《Optimization》2012,61(5):789-798
In this article, we give necessary optimality conditions for a bilevel optimization problem (P). An intermediate single-level problem (Q), which is equivalent to the bilevel optimization problem (P), has been introduced.  相似文献   

17.
We consider the optimal control problem for systems described by nonlinear equations of elliptic type. If the nonlinear term in the equation is smooth and the nonlinearity increases at a comparatively low rate of growth, then necessary conditions for optimality can be obtained by well-known methods. For small values of the nonlinearity exponent in the smooth case, we propose to approximate the state operator by a certain differentiable operator. We show that the solution of the approximate problem obtained by standard methods ensures that the optimality criterion for the initial problem is close to its minimal value. For sufficiently large values of the nonlinearity exponent, the dependence of the state function on the control is nondifferentiable even under smoothness conditions for the operator. But this dependence becomes differentiable in a certain extended sense, which is sufficient for obtaining necessary conditions for optimality. Finally, if there is no smoothness and no restrictions are imposed on the nonlinearity exponent of the equation, then a smooth approximation of the state operator is possible. Next, we obtain necessary conditions for optimality of the approximate problem using the notion of extended differentiability of the solution of the equation approximated with respect to the control, and then we show that the optimal control of the approximated extremum problem minimizes the original functional with arbitrary accuracy.  相似文献   

18.
This paper deals with ill-posed bilevel programs, i.e., problems admitting multiple lower-level solutions for some upper-level parameters. Many publications have been devoted to the standard optimistic case of this problem, where the difficulty is essentially moved from the objective function to the feasible set. This new problem is simpler but there is no guaranty to obtain local optimal solutions for the original optimistic problem by this process. Considering the intrinsic non-convexity of bilevel programs, computing local optimal solutions is the best one can hope to get in most cases. To achieve this goal, we start by establishing an equivalence between the original optimistic problem and a certain set-valued optimization problem. Next, we develop optimality conditions for the latter problem and show that they generalize all the results currently known in the literature on optimistic bilevel optimization. Our approach is then extended to multiobjective bilevel optimization, and completely new results are derived for problems with vector-valued upper- and lower-level objective functions. Numerical implementations of the results of this paper are provided on some examples, in order to demonstrate how the original optimistic problem can be solved in practice, by means of a special set-valued optimization problem.  相似文献   

19.
研究了特殊的二层极大极小随机规划逼近收敛问题. 首先将下层初始随机规划最优解集拓展到非单点集情形, 且可行集正则的条件下, 讨论了下层随机规划逼近问题最优解集关于上层决策变量参数的上半收敛性和最优值函数的连续性. 然后把下层随机规划的epsilon-最优解向量函数反馈到上层随机规划的目标函数中, 得到了上层随机规划逼近问题的最优解集关于最小信息概率度量收敛的上半收敛性和最优值的连续性.  相似文献   

20.
In this paper, we study the bilevel programming problem with discrete polynomial lower level problem. We start by transforming the problem into a bilevel problem comprising a semidefinite program (SDP for short) in the lower level problem. Then, we are able to deduce some conditions of existence of solutions for the original problem. After that, we again change the bilevel problem with SDP in the lower level problem into a semi-infinite program. With the aid of the exchange technique, for simple bilevel programs, an algorithm for computing a global optimal solution is suggested, the convergence is shown, and a numerical example is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号