首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 506 毫秒
1.
Z箍缩驱动聚变-裂变混合能源堆总体概念研究   总被引:11,自引:11,他引:0       下载免费PDF全文
中国工程物理研究院提出的Z箍缩驱动聚变-裂变混合能源堆(Z-FFR)概念,采用Z箍缩热核聚变产生的大量中子驱动次临界裂变堆而释放能量,集成了"局部整体点火"聚变靶、"先进次临界能源堆"等创新概念,在安全、经济、持久和环境友好等方面具有优良的品质,有望成为有效应对未来能源危机和环境气候问题的千年能源。简要回顾了国内外Z箍缩聚变能源(Z-IFE)的相关研究进展,介绍了中国工程物理研究院在Z-FFR方向的总体概念研究情况,从驱动器、聚变靶设计和次临界裂变堆三方面阐述了此能源系统的原理结构和运行特点,对其经济性进行了评估,同时提出了未来Z-FFR的发展路线图设想。  相似文献   

2.
Z箍缩聚变裂变混合堆包层中子学分析   总被引:2,自引:0,他引:2       下载免费PDF全文
作为一种有竞争力的能源系统,Z箍缩聚变裂变混合堆(Z-FFR)正在开展概念研究,包层研究正是其中重要的一部分。建立了Z-FFR包层设计模型,分析了包层影响因素、中子平衡、通量与功率密度、燃耗等方面,表明该包层设计在50年内能量放大因子、氚增殖比和燃料增殖比的平均值分别为14.91,1.294和5.140,满足设计要求。针对聚变源的脉冲特性进行了包层的瞬态中子学分析,发现燃料区中子脉冲可分为聚变中子、瞬发裂变中子和缓发裂变中子脉冲三个部分,绝大部分热量约在0.01s内沉积。结果较完整地给出了Z-FFR包层的中子学参数,为概念研究提供了基础。  相似文献   

3.
肖德龙  丁宁  王冠琼  王小光  李晨光  毛重阳 《强激光与粒子束》2020,32(9):092005-1-092005-12
基于脉冲功率技术的Z箍缩过程可以实现驱动器电储能到X光辐射的高效率转换,形成极端温度、密度、压力条件,近年来在惯性约束聚变及高能量密度应用中取得了一系列重要进展。综述了国际上辐射间接驱动和磁直接驱动两条Z箍缩聚变技术路线发展现状,简要介绍了我国Z箍缩聚变尤其是7~8 MA脉冲功率装置上的动态黑腔研究进展;分别从辐射与物质相互作用、辐射不透明度、材料动态特性、实验室天体物理等方面,概述了Z箍缩应用于高能量密度物理研究的技术路线和主要成果。希望通过对Z箍缩聚变及高能量密度应用研究的论述和发展趋势分析,推动我国Z箍缩研究领域的进一步发展。  相似文献   

4.
Z箍缩驱动混合堆包层瞬态传热特性   总被引:2,自引:0,他引:2       下载免费PDF全文
Z箍缩驱动聚变-裂变混合能源堆(Z-FFR)以较长周期(10s)脉冲式运行,为实现3000 MW的热功率输出,单个脉冲需要产生的能量较大,包层和第一壁在强热冲击下的瞬态传热和温度特性是决定Z-FFR技术可行性的关键问题之一。通过理论计算,分析了在连续脉冲作用下包层和第一壁温度随时间的变化规律。同时以输出恒定的电功率为目标,提出了展平系统输出功率的简便方法,并分析了出口冷却剂温度的波动特性。结果表明材料最高温度均在安全限值内,第一壁表面瞬时高温层厚度约为0.5mm,系统输出功率波动幅度在-2.84%~+2.05%范围内。  相似文献   

5.
针对Z箍缩驱动聚变裂变混合能源系统对驱动器的总体要求,对可能的技术路线进行了分析评述,结合当前在单脉冲超高功率Z箍缩驱动器和重复频率脉冲功率技术方面的研究基础,提出了混合模式直线变压驱动器概念设计思想,分析了主要的技术难点,明确了相应的关键技术攻关方向,同时对Z箍缩驱动器的总体发展计划提出了建议。  相似文献   

6.
段书超  谢卫平  王刚华 《强激光与粒子束》2018,30(2):020101-1-020101-3
提出采用方向时变(旋转)的驱动磁场(交替Θ-Z箍缩构型)或者多级嵌套Θ-Z箍缩构型来抑制动态Z箍缩的MRT不稳定性的概念,介绍了对交替/嵌套Θ-Z箍缩MRT不稳定性的最新研究进展,结果表明适当优化的交替/嵌套Θ-Z箍缩的MRT不稳定性明显远低于标准Θ箍缩或者Z箍缩的,一定厚度时甚至被完全致稳,这表明交替/嵌套Θ-Z箍缩构型具有潜力应用于Θ-Z箍缩套筒惯性聚变。  相似文献   

7.
吴茜  祁建敏  王真 《强激光与粒子束》2018,30(9):096005-1-096005-4
利用ANSYS程序对Z箍缩驱动聚变-裂变混合堆(Z-FFR)第一壁在瞬态热流加载下的热-力学响应进行了模拟计算,分析了第一壁温度、应力随时间和深度的分布。结果表明,周期性脉冲加载不会导致第一壁产生温度累积效应,第一壁温度峰值409 ℃,出现在钨层表面,钨层最大应力140 MPa,锆合金基底最大应力33 MPa。  相似文献   

8.
杨震华 《物理》2001,30(2):81-85
目的,快过程Z箍缩内爆等离子体可以把储存的脉冲功率加速器内155的电能转化为大能量、高功率的X射线源,美国Sandia实验室的Z装置已经产生了总能量为1.8MJ、功率为290TW和黑腔湿度超过200eV的X射线源,这些进展正在用于惯性约束聚变(ICF)实验研究,并对它的后续装置X-1正在进行概念性设计,文章概要地叙述了Sandia实验室近五年来在Z装置上进行Z箍缩实验所取得的进展。  相似文献   

9.
 实现惯性约束聚变(ICF)和高产额(high yield,HY)要求脉冲驱动电流峰值达到约60 MA,采用类似SATURN和Z装置等传统的技术途径进一步提高驱动电流,从装置造价、结构复杂性和运行可靠性等方面看都具有相当大的难度,因此,需要发展新的短脉冲大电流驱动源技术,解决快Z箍缩技术发展的瓶颈。概述了国际上快Z箍缩驱动源技术的研究现状和趋势,介绍了有代表性的ICF/HY等离子体辐射源(plasma radiation source 简称PRS)或威胁级大型X射线模拟源初步概念设计、拟采用的技术途径,如俄罗斯大电流所(HCEI)基于FLTD(fast linear transformer driver)技术的直接驱动源、美国基于FLTD的新SATURN驱动源和基于FMG(fast Marx generator)技术的快Z箍缩驱动源,提出了快Z箍缩直接驱动源需要发展的关键技术。  相似文献   

10.
基于脉冲功率技术的箍缩装置能够在cm空间尺度和百ns时间尺度产生极端的高温、高压、高密度以及强辐射环境。中物院流体物理研究所在已建成的10 MA级的大型箍缩装置上开展多种负载构型的高能量密度物理实验研究。利用Z箍缩动态黑腔创造出了惯性约束聚变研究所需的高温辐射场;研究了金属箔套筒和固体套筒的内爆动力学特性;利用中低Z材料内爆获得了可观的K壳层线辐射并用于X射线热-力学效应实验研究;磁驱动准等熵加载和冲击加载为材料动态特性研究提供了新的实验能力;采用环形二极管和反射三极管技术的轫致辐射源获得了高剂量(率)的X射线和γ射线;利用磁驱动的径向金属箔模拟了天体物理中恒星射流的形成及其辐射的产生。此外,还介绍了利用反场构型磁化靶聚变装置开展的预加热磁化等离子体靶形成等实验结果。  相似文献   

11.
为研究氚自持条件,建立了Z-FFR氚分析模型,基于理论方程和氚平均滞留时间方法进行计算,得到稳态运行时排灰气处理系统、氚增殖提取系统、同位素分离系统、水去氚化系统的氚质量流分别为52.30,25.40,81.30,3.60 g/day,对应的氚盘存量为52.30,25.40,8.13,1.80 g。同时以氚质量流推导出氚自持判断条件,分析了设计参数能够满足氚自持要求,同时获得了燃烧效率、氚增殖率、提取效率与氚自持的互补关系,三者作为关键参数相互依存,于临界值、设计值、理想值之间分析了氚的自持情况。  相似文献   

12.
介绍了面向Z箍缩驱动聚变裂变混合堆(Z-FFR)能源的重复频率800kA快上升沿的线性变压器驱动源(LTD)模块的设计和测试。LTD模块由34组RLC电路组成,每组包含2台100kV/40nF脉冲电容器、1个多间隙气体开关和非晶磁芯。研制的模块可以在匹配水电阻负载上以0.1 Hz的重复频率输出上升沿约100ns的800kA的电流脉冲。采用了一个高压触发信号来触发整个模块的新触发方式,将外触发信号通过模块内布置的角向传输线等网络同时到达并触发所有的高压开关,实验结果表明采用一路140kV、25ns前沿的触发脉冲可以可靠地触发整个模块。为了保证LTD模块每10s输出一个80kV/800kA的电流脉冲,非晶磁芯的去磁复位采用了一个5.2kA、脉宽30!s的电流脉冲,其运行频率为0.1 Hz。模块采用的多间隙气体开关运行寿命超过10 000次,其抖动小于3ns。  相似文献   

13.
针对神光Ⅲ原型实验中出现的动态畸变现象,开展了条纹相机动态成像特性研究。结合实验图像,利用CST Particle Studio软件模拟了强信号下变像管的成像过程,结果表明:在强信号下,变像管的空间电荷效应会造成电子束聚焦点与理想成像面距离减小,使得图像的放大倍数变小,产生信号弯曲现象,并且这一现象随着电流强度的增加更为明显。  相似文献   

14.
紧凑型可重复运行的高功率纳秒脉冲源   总被引:14,自引:10,他引:4       下载免费PDF全文
讨论了一种低阻抗、高储能密度、可输出中等高压的百ns脉冲形成技术,其输出波形质量较好;采用磁感应电压叠加技术将该脉冲形成装置输出的中等高压脉冲叠加到应用需求的高电压高功率脉冲。研究表明单个感应模块可在2.8 Ω的负载上获得脉冲宽度为220 ns,前沿为50 ns的中等高压脉冲。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号