首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The stability of the Couette flow of the liquid with the power law viscosity in a wide annular gap has been investigated theoretically in this work with the aid of the method of small disturbances. The Taylor number, being a criterion of the stability, has been defined using the mean apparent viscosity value in the main flow. In the whole range of the radius ratio, R i /R o and the flow index, n, considered (R i /R o 0.5, n = 0.25–1.75 ), the critical value of the Taylor number Ta c is an increasing function of the flow index, i.e., shear thinning has destabilizing influence on the rotational flow, and dilatancy exhibits an opposite tendency.In the wide ranges of the flow index, n > 0.5, and the radius ratio, R i /R o > 0.5, the wide-gap effect on the stability limit is predicted to be almost the same for non-Newtonian fluids as for Newtonian ones. The ratio on the critical Taylor numbers for non-Newtonian and Newtonian fluids: Ta c (n) and Ta c (n = 1) obey a generalized functional dependence: Ta c (n)/Ta c (n = 1) = g(n), where g(n) is a function corresponding to the solution for the narrow gap approximation.Theoretical predictions have been compared with experimental results for pseudoplastic liquids. In the range of the radius ratio R i /R o > 0.6 the theoretical stability limit is in good agreement with the experiments, however, for R i /R o < 0.6, the critical Taylor number is considerably lower than predicted by theory.  相似文献   

2.
Atactic polystyrenes of narrow molar mass distribution with average molar masses larger than the critical molar massM c were mixed with similar polystyrenes of molecular masses lower thanM c . Linear viscoelastic melt properties of these binary blends were measured with a dynamic viscometer of the concentric cylinder type. One of the experimental findings is that the time-temperature shift factorsa T are dependent on the composition of the samples. This can be understood, if free volume due to chain-ends is taken into account. A computer-fitted WLF-equation being modified in a proper way leads to the following results: At the glass-transition-temperature the fraction of free volume in polystyrene of infinite molar mass is only 0.015. At a temperature of 180 °C the mean value of the free volume at a chain end is 0.029 nm3 for the polystyrene investigated.  相似文献   

3.
Studies of the onset of instabilities were conducted on single hole and multi-hole contractions using laser speckle visualization. A well characterized elastic fluid was used with constant viscosity of 13.1 Pa · s and elasticity characterized by a longest relaxation time constant of 2.233 s. The onset of instabilities was characterized in terms of the Deborah number and the contraction ratio. Three types of instabilities were observed: pulsing vortices, azimuthally rotating vortices, and swirling vortices. For the single hole contractions the critical Deborah number for instability increased from 4.4 to 5.07 to 5.25 as the contraction ratio increased from 4: 1 to 8: 1 to 12: 1. The magnitude of the instabilities was much greater for the 4: 1 contraction than for the other two contraction ratios. For the multi-hole contraction a square array of nine holes was used and the ratio of the hole diameter to hole spacing was varied. The height of the vortices is very similar for the single hole and multi-hole contractions at low Deborah numbers. At high Deborah numbers the effect of adjacent holes is to reduce the height of the vortices by a factor of three. For the 4: 1 spacing no secondary vortex was observed below a Deborah number of De = 3.7. Secondary vortices occurred for the 8:1 and 10:1 spacing at all Deborah numbers. Unstable pulsing vortices appeared for all spacings at a critical Deborah number around 5.5. Adjacent holes decreased the strength of the unsteady vortex motions. The centerline velocities were measured for the multi-hole contraction at shear rates of 5, 30, and 300 s–1. The elongational strain rates are similar at a low shear rate of 5 s–1. As shear rate is increased the onset of stretching occurs closer to the plane of the contraction for the smaller contraction ratios.  相似文献   

4.
To investigate the viscoelastic behavior of fluid dispersions under steady shear flow conditions, an apparatus for parallel superimposed oscillations has been constructed which consists of a rotating cup containing the liquid under investigation in which a torsional pendulum is immersed. By measuring the resonance frequency and bandwidth of the resonator in both liquid and in air, the frequency and steady-shear-rate-dependent complex shear modulus can be obtained. By exchange of the resonator lumps it is possible to use the instrument at four different frequencies: 85, 284, 740, and 2440 Hz while the steady shear rate can be varied from 1 to 55 s–1. After treatment of the theoretical background, design, and measuring procedure, the calibration with a number of Newtonian liquids is described and the accuracy of the instrument is discussed.Notation a radius of the lump - A geometrical constant - b inner radius of the sample holder - c constant - C 1, C 2 apparatus constants - D damping of the pendulum - e x , e y , e z Cartesian basis - e r , e , e z orthonormal cylindrical basis - E geometrical constant - E t , 0 E t , t relative strain tensor - f function of shear rate - F t relative deformation tensor - G (t) memory function - G * complex shear modulus - G Re(G * ) - G Im(G * ) - h distance between plates - H * transfer function - , functional - i imaginary unit: i 2= – 1 - I moment of inertia - J exc excitation current - J 0 amplitude of J exc - k * = kik complex wave number - K torsional constant - K fourth order tensor - l length of the lump - L mutual inductance - M dr driving torque - M liq torque exerted by the liquid - 0 M liq, liq steady state and dynamic part of Mliq - n power of the shear rate - p isotropic pressure - Q quality factor - r radial position - R,R 0, R c Re(Z *, Z 0 * , Z c * ) - s time - t, t time - T temperature - T, 0 T, stress tensor - u velocity - U lock-in output - 0 velocity - V det detector output voltage - V sig, V cr signal and cross-talk part of V det - x Cartesian coordinate - X , X 0, X c Im(Z *, Z 0 * , Z c * ) - y Cartesian coordinate - z Cartesian coordinate, axial position  相似文献   

5.
Zusammenfassung Nach einer kurzen Beschreibung über die Anwendung der Taylor-Wirbelströmung bei der Filtration von nichtnewtonschen Flüssigkeiten werden polymere Modellflüssigkeiten charakterisiert, die als Partikel- und Netzwerklösungen in einer Wirbelströmungsapparatur eingesetzt wurden. Die Fließkurven der Polymerlösungen zeigen aufgrund der extrem hochmolekularen Polymerproben neben strukturviskosen Erscheinungen auch dilatantes Fließverhalten mit besonderer Wirkung auf die Taylor-Wirbelströmung.Die Versuchsflüssigkeiten offenbaren vier verschiedene Typen von Strömungsinstabilitäten: spiralförmige, schwingende und stationäre Instabilitäten sowie gedämpfte Turbulenz. Während die stark strukturviskosen Netzwerklösungen alle genannten Formen aufweisen, fehlt bei den Partikellösungen die spiralförmige Instabilität.Unter Zuhilfenahme des Hantelmolekülmodells zur Beschreibung viskoelastischer Strömungsphänomene gelingt es, durch Einführung einer kritischen Deborahzahl den Einsatzpunkt nichtnewtonscher Taylorströmungseffekte vorauszusagen. Die gefundene Beziehung steht in engem Zusammenhang mit dehnviskositätserhöhenden Polymerwirkungen in Porenströmungen und mit reibungsmindernden Polymereffekten in turbulenten Rohrströmungen.
Experimental investigations dealing with dilute polymer solutions are described after a short review of the application of Taylor-vortex flow in the filtration processes of non-Newtonian fluids. The test fluids represent both viscoelastic solutions with isolated macromolecules and network solutions with power law fluid behaviour.These solutions show four different types of flow instabilities: spiral-shaped, oscillatory, steady and turbulent phenomena. The Taylor-numbers which depend upon the polymer concentration are determined for the onset of these instability types. For isolated macromolecule solutions, the Deborah-number concept for dilute dumbbell solutions can be applied to describe the first appearance of irregular nonstationary Taylor vortices.The present data are compared to literature values. This fluid behaviour is related to extensional viscosity increases which are also observed in porous media flow and turbulent pipe flow of dilute macromolecular solutions.

Nomenklatur A, B Konstanten aus Randbedingungen der Ringspaltströmung - C Polymerkonzentration - D Schergeschwindigkeit - De Deborahzahl - l Länge einer Wirbelzelle - L Zylinderlänge - m Gesamtanzahl der Wirbelpaare zur Bestimmung der Wellenzahl - M Molmasse der Polymere - M w Gewichtsmittel der Molmasse - M v Viskositätsmittel der Molmasse - n Drehzahl des Rotors - universelle Gaskonstante - r Radius - R a Radius des Außenzylinders - R i Radius des Innenzylinders - s Spaltweite - s * dimensionslose Spaltweite - T Temperatur - Ta Taylorzahl - v Umfangsgeschwindigkeit - z Anzahl der Wirbelpaare zur Bestimmung der Wellenzahl Griechische Symbole Deformationskoeffizient von Makromolekülen - Wellenzahl - Dehnrate - dynamische Viskosität - [] Grenzviskositätszahl - Relaxationszeit - Dichte - Schubspannung - Winkelgeschwindigkeit - a Winkelgeschwindigkeit des Außenzylinders - i Winkelgeschwindigkeit des Innenzylinders Indices c kritisch (erstmaliges Auftreten von Taylorwirbel) - N newtonsch - o onset, Schwellwert - P polymer - r radial - Sch schwingend - Spir spiralförmig - Stat stationär - Turb turbulent - T Taylorströmung - Umfangsrichtung Herrn Prof. Dr. Heinz Harnisch zum 60. Geburtstag gewidmet  相似文献   

6.
An analysis of particle orientation in a dilute suspension of rodlike particles in a second-order fluid was performed to examine the effects of the elasticity of the fluid and of weak Brownian diffusion of the particle on its orientation. Distributions of particle orientation under a simple shear flow with rate of shearg have been obtained as a function of a single nondimensional parameter, * =/r e 2 (D/g), which combines the effects of the particle aspect ratior e , the weak fluid elasticity, and the weak Brownian rotation diffusion coefficientD of the particle. In the limit of larger e , when the fluid elasticity is strong enough to overcome the rotational diffusion effect on the particle motion, most of the particles will orient close to the vorticity axis. A new shear-thinning mechanism of the shear viscosity of such systems is predicted by the theory.  相似文献   

7.
The stability of the laminar helical flow of pseudoplastic liquids has been investigated with an indirect method consisting in the measurement of the rate of mass transfer at the surface of the inner rotating cylinder. The experiments have been carried out for different values of the geometric parameter = R 1/R 2 (the radius ratio) in the range of small values of the Reynolds number,Re < 200. Water solutions of CMC and MC have been used as pseudoplastic liquids obeying the power law model. The results have been correlated with the Taylor and Reynolds numbers defined with the aid of the mean viscosity value. The stability limit of the Couette flow is described by a functional dependence of the modified critical Taylor number (including geometric factor) on the flow indexn. This dependence, general for pseudoplastic liquids obeying the power law model, is close to the previous theoretical predictions and displays destabilizing influence of pseudoplasticity on the rotational motion. Beyond the initial range of the Reynolds numbers values (Re>20), the stability of the helical flow is not affected considerably by the pseudoplastic properties of liquids. In the range of the monotonic stabilization of the helical flow the stability limit is described by a general dependence of the modified Taylor number on the Reynolds number. The dependence is general for pseudoplastic as well as Newtonian liquids.Nomenclature C i concentration of reaction ions, kmol/m3 - d = R 2R 1 gap width, m - F M () Meksyn's geometric factor (Eq. (1)) - F 0 Faraday constant, C/kmol - i l density of limit current, A/m3 - k c mass transfer coefficient, m/s - n flow index - R 1,R 2 inner, outer radius of the gap, m - Re = V m ·2d·/µ m Reynolds number - Ta c = c ·d3/2·R 1 1/2 ·/µ m Taylor number - Z i number of electrons involved in electrochemical reaction - = R 1/R 2 radius ratio - µ apparent viscosity (local), Ns/m2 - µ m mean apparent viscosity value (Eq. (3)), Ns/m2 - µ i apparent viscosity value at a surface of the inner cylinder, Ns/m2 - density, kg/m3 - c angular velocity of the inner cylinder (critical value), 1/s  相似文献   

8.
Suspensions consisting of particles of colloidal dimensions have been reported to form connected structures. When attractive forces act between particles in suspension they may flocculate and, depending on particle concentration, shear history and other parameters, flocs may build-up in a three-dimensional network which spans the suspension sample. In this paper a floc network model is introduced to interpret the elastic behavior of flocculated suspensions at small deformations. Elastic percolation concepts are used to explain the variation of the elastic modulus with concentration. Data taken from the suspension rheology literature, and new results with suspensions of magnetic -Fe2O3 and non-magnetic -Fe2O3 particles in mineral oil are interpreted with the model proposed.Non-zero elastic modulus appeared at threshold particle concentrations of about 0.7 vol.% and 0.4 vol.% of the magnetic and non-magnetic suspensions, respectively. The difference is attributed to the denser flocs formed by magnetic suspensions. The volume fraction of particles in the flocs was estimated from the threshold particle concentration by transforming this concentration into a critical volume concentration of flocs, and identifying this critical concentration with the theoretical percolation threshold of three-dimensional networks of different coordination numbers. The results obtained indicate that the flocs are low-density structures, in agreement with cryo-scanning electron micrographs. Above the critical concentration the dynamic elastic modulus G was found to follow a scaling law of the type G ( f - f c ) f , where f is the volume fraction of flocs in suspension, and f c is its threshold value. For magnetic suspensions the exponent f was found to rise from a low value of about 1.0 to a value of 2.26 as particle concentration was increased. For the non-magnetic a similar change in f was observed; f changed from 0.95 to 3.6. Two other flocculated suspension systems taken from the literature showed a similar change in exponent. This suggests the possibility of a change in the mechanism of stress transport in the suspension as concentration increases, i.e., from a floc-floc bond-bending force mechanism to a rigidity percolation mechanism.  相似文献   

9.
The rheological properties of rennet-induced skim milk gels were determined by two methods, i.e., via stress relaxation and dynamic tests. The stress relaxation modulusG c (t) was calculated from the dynamic moduliG andG by using a simple approximation formula and by means of a more complex procedure, via calculation of the relaxation spectrum. Either calculation method gave the same results forG c (t). The magnitude of the relaxation modulus obtained from the stress relaxation experiments was 10% to 20% lower than that calculated from the dynamic tests.Rennet-induced skim milk gels did not show an equilibrium modulus. An increase in temperature in the range from 20° to 35 °C resulted in lower moduli at a given time scale and faster relaxation. Dynamic measurements were also performed on acid-induced skim milk gels at various temperatures andG c (t) was calculated. The moduli of the acid-induced gels were higher than those of the rennet-induced gels and a kind of permanent network seemed to exist, also at higher temperatures. G storage shear modulus,N·m–2; - G loss shear modulus,N·m–2; - G c calculated storage shear modulus,N·m–2; - G c calculated loss shear modulus,N·m–2; - G e equilibrium shear modulus,N·m–2; - G ec calculated equilibrium shear modulus,N·m–2; - G(t) relaxation shear modulus,N·m–2; - G c (t) calculated relaxation shear modulus,N·m–2; - G *(t) pseudo relaxation shear modulus,N·m–2; - H relaxation spectrum,N·m–2; - t time,s; - relaxation time,s; - angular frequency, rad·s–1. Partly presented at the Conference on Rheology of Food, Pharmaceutical and Biological Materials, Warwick, UK, September 13–15, 1989 [33].  相似文献   

10.
The analysis of the rotation of a ferromagnetic ellipsoid suspended in a Newtonian fluid and subjected to a uniform magnetic field is extended to include a long, slender cylindrical fiber which is magnetically saturated. Experimental observations of rotating nickel cylinders with aspect ratiosL/D ranging from 5 to 40 agree with the theoretical predictions that: (1) the proper magnetoviscous time constant for the motion is MV = s/µ 0 M s 2 , (2) larger fiber aspect ratios result in considerably longer orientation times; and (3) the strength of the applied external field has only a slight effect on the overall fiber rotation, and has no effect on the maximum angular velocity achieved. Quantitative agreement of theory and experiments is obtained for fibers withL/D 20; for the shorter fibers, the theory tends to overpredict the fiber rotation rate by as much as 30%. D diameter of the cylinder - D P (r) position-dependent demagnetization tensor, implicitly defined in eq. (2.5) - D xx,D yy,D zz volume-averaged demagnetizing factors for an ellipsoid equivalent to a uniformly magnetized cylinder, defined in eq. (2.6) - H i ;H i magnetic field inside a ferromagnetic body; magnitude ofH i - H 0;H 0 magnetic field applied by external sources; magnitude ofH 0 - k geometric parameter in the hydrodynamic resistance of a body rotating in a Newtonian fluid, eq. (2.2) - L length of the cylinder - L (h);L z (h) hydrodynamic torque exerted on a rotating body; thez-component ofL (h) on the cylinder - L (m);L z (m) magnetic torque exerted on a magnetic body in a magnetic field, eq. (2.4); thez-component ofL (m) on the cylinder - M the magnetization of a magnetic material - M s the saturation magnitude ofM, approached by all ferromagnetic materials asH i becomes large - r position vector of a point within a ferromagnetic body - V volume of a magnetic particle - x, y, z rectangular coordinate axes fixed in the cylinder according to figure 1 - angle of inclination of the axis of the cylinder with respect toH 0 - shear rate - small parameter of slender body theory,=1/ln (2L/D) - s constant viscosity of the suspending fluid - µ 0 the magnetic permeability of free space,µ 0=4 · 10–7 H/m - MV the magnetoviscous time constant, a characteristic time for a process involving a competition of viscous and magnetic stresses - 1 the first normal-stress coefficient - ; z angular velocity of a rotating body; angular velocity of a cylinder about thez-axis, z =– d/dt  相似文献   

11.
Three-dimensional studies on bicomponent extrusion   总被引:1,自引:0,他引:1  
The present work is concerned with the mathematical modelling and numerical simulation of three-dimensional (3-D) bicomponent extrusion. The objective is to provide an understanding of the flow phenomena involved and to investigate their impact on the free surface shape and interface configuration of the extruded article. A finite element algorithm for the 3-D numerical simulation of bicomponent stratified free surface flows is described. The presence of multiple free surfaces (layer interface and external free surfaces) requires special free surface update schemes. The pressure and viscous stress discontinuity due to viscosity mismatch at the interface between the two stratified components is handled with both a double node (u–v–w–P 1 –P 2 –h 1 –h 2) formulation and a penalty function (u–v–w–P–h 1 –h 2) formulation.The experimentally observed tendency of the less viscous layer to encapsulate the more viscous layer in stratified bicomponent flows of side-by-side configuration is established with the aid of a fully 3-D analysis in agreement with experimental evidence. The direction and degree of encapsulation depend directly on the viscosity ratio of the two melts. For shear thinning melts exhibiting a viscosity crossover point, it is demonstrated that interface curvature reversal may occur if the shearing level is such that the crossover point is exceeded. Extrudate bending and distortion of the bicomponent system because of the viscosity mismatch is shown. For flows in a sheath-core configuration it is shown that the viscosity ratio may have a severe effect on the swelling ratio of the bicomponent system.Modelling of the die section showed that the boundary condition imposed at the fluid/fluid/wall contact point is critical to the accuracy of the overall solution.  相似文献   

12.
We continue the comparison of the results of an interlayer model, based on the theory of elastic continua, and a molecular model, derived from a theory of mixtures, previously presented in terms of bulk moduli K. We now derive expressions for the dependence of the thermal expansivity c on the volume fraction f of the filler, at low and elevated values of f . Correspondencies between the characteristic parameters, viz. adhesion and repulsion ratios on the one hand, and interlayer content and thermal properties of matrix, filler, and layer, on the other, are examined. Since in the molecular theory both andK are derived from an equation of state, the identical set of parameters determines both functions and suggests correlations between them.  相似文献   

13.
If the viscosity can be expressed in the form = (T)f(), the walls are at a constant temperatureT 0, and the extra stress, velocity and temperature fields are fully developed, then the wall shear rate can be calculated by applying the Weissenberg-Rabinowitsch operator toF c Q instead of to the flow rateQ, whereF c is a correction factor which differs from 1 when the temperature field is non-uniform; the isothermal equation relating the wall shear stress and pressure gradient is still valid. For the case in whcih = 0|| n /(1 +(TT 0)), wheren, 0, and are independent of shear stress and temperatureT, an exact analytical expression forF c in terms of the Nahme-Griffith numberNa andn is obtained. Use of this expression gives agreement with data obtained for degassed decalin ( = 2.5 mPa s) from a new miniature slit-die viscometer at shear rates up to 5 × 106s–1; here, the correction is only 7%,Na is 1.3, andGz, the Graetz number at the die exit, is 119. For a Cannon standard liquidS6 ( = 9 mPa s), agreement extends up to 5 × 105s–1; at 2×106s–1 (whereNa = 7.2 andGz = 231), the corrections are 11% (measured) and 36% (calculated).Notation x, y Cartesian coordinates - v x ,v velocity inx-direction, dimensionless velocity - p xx ,p yy normal stress onx- andy-planes - N 1 first normal stress difference - shear stress ony-planes acting inx-direction - w value of shear stress at the wall - shear rate, shear rate at the wall - Q, Q flow rate (Eqs. (2.13), (2.15)) - T, T 0 temperature, temperature at the wall - ø, dimensionless temperature (Eqs. (2.24), (2.25)) - h, w half of die height, width of die - R diameter of a tube - , 0 viscosity, viscosity atT = T 0 - viscosity-temperature coefficient - k thermal conductivity - c p specific heat at constant pressure - n, m dimensionless parameters characterizing shear stress dependence of viscosity - Na Nahme Griffith number (Eq. (2.21)) - Gz Graetz number (Eq. (5.1)) - F c viscous heating correction factor (Eq. (2.18)) - ( ) a function characterizing temperature dependence of viscosity (Eq. (2.8)) - J k ( ) Bessel function of the first kind This paper is dedicated to Professor Hanswalter Giesekus on the occasion of his retirement as Editor of Rheologica Acta.  相似文献   

14.
Under the influence of a uniform and parallel magnetic field, a ferromagnetic fiber suspended in a Newtonian fluid rotates to align with the field direction. This study examines the field-induced rotation process for an individual non-Brownian axisymmetric ellipsoid suspended in a stagnant Newtonian fluid. Theoretical predictions are derived by a perturbation analysis for the limiting case where the strength of the applied magnetic field far exceeds the saturation magnetization of the ellipsoid. Numerical calculations are performed for the more general problem of an ellipsoid with known isotropic, non-hysteretic magnetic properties, using nickel and a stainless steel as examples. The analysis encompasses materials with field-induced, nonlinear magnetic properties, distinguishing these results from the simpler cases where the particle magnetization is either independent of, or linearly dependent on, the strength of the applied external field. In this study, predictions indicate that when the ellipsoid is magnetically saturated, the particle rotation is governed by the magnetoviscous time constant, MV = s/0 M s 2 . It is found that the rotation rate depends strongly on the aspect ratio,a/b, of the ellipsoid, but only weakly on the dimensionless magnetization,M s/H 0. A geometric parameter for an ellipsoid, defined in eq. (2.5) - a, b major, minor semi-axes of an axisymmetric ellipsoid - D demagnetization tensor for an ellipsoid - D M magnetometric demagnetization tensor, the volume-average ofD P (r) - D P (r) position dependent demagnetization tensor, implicitly defined in eq. (2.12) - D xx,D yy,D zz demagnetization factors, the diagonal elements ofD. Values for ellipsoids are defined in eq. (2.15) - F (m) magnetic force exerted on a body in a magnetic field - H i ;H i magnetic field inside a ferromagnetic body; magnitude ofH i - H 0;H 0 magnetic field applied by external sources; magnitude ofH 0 - h i ;h ix,h iy Cartesian components of dimensionless internal magnetic field,h i =H i /H 0 - I moment of inertia tensor - k geometric parameter for hydrodynamic resistance of a body rotating in a Newtonian fluid given in eq. (2.3) - L (h);L z (h) hydrodynamic torque exerted on a rotating body; thez-component of the hydrodynamic torque - L (m);L z (m) magnetic torque exerted on a magnetic body in a magnetic field, eq. (2.10); thez-component of the magnetic torque - M;M the magnetization, or dipole moment density, of a magnetic material; the magnitude ofM - M s the saturation value ofM, approached by all ferromagnetic materials asH i becomes large (figure 3) - m s the dimensionless saturation magnetization,M s/H 0 - r position vector of a point within a ferromagnetic body - s dummy integration variable in eq. (2.5) - t time - U magnetoquasistatic potential energy of a magnetic body in a magnetic field, given in eq. (2.8) - u curve-fitting variable in eq. (4.1);u = logH i - V volume of a magnetic particle; for an axisymmetric ellipsoid,V = (4/3) ab 2 - x, y, z rectangular coordinate axes fixed in the ellipsoid (figure 1) - angle of inclination of the major axis of the ellipsoid with respect toH 0 - s viscosity of the Newtonian suspending medium - µ 0 the magnetic permeability of free space,µ 0 =4 · 10–7H/m - MV the magnetoviscous time constant, a characteristic time for a process involving a competition of viscous and magnetic stresses - the magnetic susceptibility of a magnetic material, = M/H i - ; z angular velocity of a rotating body; angular velocity about thez-axis of an ellipsoid, z=–d/dt  相似文献   

15.
Superposition of oscillatory shear imposed from the boundary and through pressure gradient oscillations and simple shear is investigated. The integral fluid with fading memory shows flow enhancement effects due to the nonlinear structure. Closed-form expressions for the change in the mass transport rate are given at the lowest significant order in the perturbation algorithm. The elasticity of the liquid plays as important a role in determining the enhancement as does the shear dependent viscosity. Coupling of shear thinning and elasticity may produce sharp increases in the flow rate. The interaction of oscillatory shear components may generate a steady flow, either longitudinal or orthogonal, resulting in increases in flow rates akin to resonance, and due to frequency cancellation, even in the absence of a mean gradient. An algorithm to determine the constitutive functions of the integral fluid of order three is outlined.Nomenclature A n Rivlin-Ericksen tensor of order . - A k Non-oscillatory component of the first order linear viscoelastic oscillatory velocity field induced by the kth wave in the pressure gradient - d Half the gap between the plates - e x, e z Unit vectors in the longitudinal and orthogonal directions, respectively - G(s) Relaxation modulus - G History of the deformation - Stress response functional - I() Enhancement defined as the ratio of the frequency dependent part of the discharge to the frequencyindependent part of it at the third order - I *() Enhancement defined as the ratio of the increase in discharge due to oscillations to the total discharge without the oscillations - k Power index in the relaxation modulus G(s) - k i –1 Relaxation times in the Maxwell representation of the quadratic shear relaxation modulus (s 1, s 2) - m i –1, n i –1 Relaxation times in the Maxwell representations of the constitutive functions 1(s 1,s 2,s 3) and 4 (s 1, s 2,s 3), respectively - P Constant longitudinal pressure gradient - p Pressure field - mx ,(3) nz ,(3) Mean volume transport rates at the third order in the longitudinal and orthogonal directions, respectively - 0,(3), 1,(3) Frequency independent and dependent volume transport rates, respectively, at the third order - s = t- Difference between present and past times t and   相似文献   

16.
A mathematical model was developed to describe the behavior of Herschel-Bulkley fluids in a back extrusion (annular pumping) device. A technique was also developed to determine the rheological properties (yield stress, flow behavior index, and consistency coefficient) of these fluids. Mathematical terms were expressed in four dimensionless terms, and graphical aids and tables were prepared to facilitate the handling of the expressions.Nomenclature a radius of the plunger, m - dv/dr shear rate, s–1 - F force applied to the plunger, N - F b buoyancy force, N - F cb force corrected for buoyancy, N - F T recorded force just before the plunger is stopped, N - F Te recorded force after the plunger is stopped, N - g acceleration due to gravity, m/s2 - H(t) momentary height between plunger and container bottom, m - K a/R, dimensionless - L length of annular region, m - L(t) depth of plunger penetration, m - n flow behavior index, dimensionless - p static pressure, Pa - P L pressure in excess of hydrostatic pressure at the plunger base, Pa - p 0 pressure at entrance to annulus, Pa - P pressure drop per unit of length, Pa/m - Q total volumetric flow rate through the annulus, m3/s - r radial coordinate, measured from common axis of cylinder forming annulus, m - R radius of outer cylinder of annulus, m - s reciprocal of n, dimensionless - t time, s - T dimensionless shear stress, defined in Eq. (3) - T 0 dimensionless yield stress, defined in Eq. (4) - T w dimensionless shear stress at the plunger wall - p velocity of plunger, m/s - velocity, m/s - mass density of fluid, kg/m3 - Newtonian viscosity, Pa s - P p 0 p L , Pa - consistency coefficient, Pa sn - value of where shear stress is zero - , + limits of the plug flow region (Fig. 1) - r/R - shear stress, Pa - y yield stress, Pa - w shear stress at the plunger wall, Pa - dimensionless flow rate defined in Eq. (24) - dimensionless velocity defined by Eq. (5) - , + dimensionless velocity outside the plug flow region - max dimensionless maximum velocity in the plug flow region - p dimensionless velocity at the plunger wall  相似文献   

17.
In the thermally developing region, d yy /dx| y=h varies along the flow direction x, where yy denotes the component of stress normal to the y-plane; y = ±h at the die walls. A finite element method for two-dimensional Newtonian flow in a parallel slit was used to obtain an equation relating d yy /dx/ y=h and the wall shear stress 0 at the inlet; isothermal slit walls were used for the calculation and the inlet liquid temperature T0 was assumed to be equal to the wall temperature. For a temperature-viscosity relation /0 = [1+(T–T0]–1, a simple expression [(hd yy /dx/ y=h )/ w0] = 1–[1-F c(Na)] [M()+P(Pr) ·Q(Gz –1)] was found to hold over the practical range of parameters involved, where Na, Gz, and Pr denote the Nahme-Griffith number, Graetz number, and Prandtl number; is a dimensionless variable which depends on Na and Gz. An order-of-magnitude analysis for momentum and energy equations supports the validity of this expression. The function F c(Na) was obtained from an analytical solution for thermally developed flow; F c(Na) = 1 for isothermal flow. M(), P(Pr), and Q(Gz) were obtained by fitting numerical results with simple equations. The wall shear rate at the inlet can be calculated from the flow rate Q using the isothermal equation.Notation x,y Cartesian coordinates (Fig. 2) - , dimensionless spatial variables [Eq. (16)] - dimensionless variable, : = Gz(x)–1 - dimensionless variable [Eq. (28)] - t,t * time, dimensionless time [Eq. (16)] - , velocity vector, dimensionless velocity vector - x , velocity in x-direction, dimensionless velocity - y , velocity in y-direction, dimensionless velocity - V average velocity in x-direction - yy , * normal stress on y-planes, dimensionless normal stress - shear stress on y-planes acting in x-direction - w , w * value of shear stress stress at the wall, dimensionless wall shear stress - w0, w0 * wall shear stress at the inlet, dimensionless variable - , * rate-of-strain tensor, dimensionless tensor - wall shear rate, wall shear rate at the inlet - Q flow rate - T, T 0, temperature, temperature at the wall and at the inlet, dimensionless temperature - h, w half the die height, width of the die - l,L the distance between the inlet and the slot region, total die length - T 2, T 3, T 4 pressure transducers in the High Shear Rate Viscometer (HSRV) (Fig. 1) - P, P2, P3 pressure, liquid pressures applied to T 2 and T 3 - , 0, * viscosity, viscosity at T = T 0, dimensionless viscosity - viscosity-temperature coefficient [Eq. (8)] - k thermal conductivity - C p specific heat at constant pressure - Re Reynolds number - Na Nahme-Griffith number - Gz Graetz number - Pr Prandtl number  相似文献   

18.
A power law distribution of relaxation times, large normal stress differences, and physical rupture of molecular network strands dominate the shear behavior of polymers at the gel point (critical gels). This is shown in a series of well-defined experiments with increasing magnitude of shear on a model-network polymer system consisting of a linear, telechelic, vinyl-terminated poly-dimethylsiloxane (PDMS) and a four-functional siloxane crosslinker. Stable samples were prepared by stopping the crosslinking reaction at different extents of reaction in the vicinity of the gel point (GP). The Gel Equation has been shown to be valid up to strains of about 2 when using a finite strain tensor. Larger strains have been found to disrupt the network structure of the crosslinking polymer, and introduce a mechanical delay to the gel point. A sample that was crosslinked beyond the gel point (p>p c ) can be reduced from the solid state to a critical gel, or even to a viscoelastic liquid, depending on the magnitude of shear strain. As a consequence, the relaxation exponent of a critical gel created under the influence of shear is less than that of a quiescently crosslinked critical gel.  相似文献   

19.
Analysis of the Higashitani-Pritchard (HP) theory for a transverse slot provides insight into the nature of the errors involved. The effects of geometry, elasticity and asymmetry on the errors in the HP theory are also discussed. Inertial effects and the effect of asymmetry are included in the HP theory for a transverse slot, through modification of the pressure term in the momentum equation; the extended HP theory proposed in this work provides evidence as to the reasons for the failure of the Newtonian hole pressure as a correction term at higher Reynolds numbers. Finally, the HP theory is used to analyse a control volume of fluid in the axial slot geometry and deduce a rigorous sufficient condition for secondary flows to exist. This analysis illustrates the nature of the role played by the second normal-stress difference (N 2) in causing secondary flows, and suggests the possibility of the direction of the secondary flows being related to the sign ofN 2. A computational study of all three aspects of the HP theory investigated in this work seems worth-while. x, y, z Cartesian coordinates - u, Cartesian velocity components inx andy directions - velocity vector - q 1,q 2,q 3 orthogonal curvilinear coordinates - h 1,h 2,h 3 scale factors of curvilinear coordinate system - P isotropic pressure - N 1 first normal-stress difference - N 2 second normal-stress difference - R e Reynolds number - R L hole-based Reynolds number (eqs. (5.3) and (5.4)) - W e Weissenberg number - H channel height - W hole width - L hole depth - S path of zero slope of streamlines (pathS) - P H hole pressure (eq. (2.1)) - P I,P E inertial and elastic pressures (eqs. (5.7–9)) - P R pressure term used in correction for asymmetry (eqs. (5.19–21)) - P IH,P EH inertial and elastic hole pressures (eqs. (5.17) and (5.12)) - P RH,P SH,P TH correction terms used in extended HP theory (eqs. (5.23–25)) - total stress tensor - extra-stress tensor - del operator - unit tensor - ij, ij components of total and extra stress tensors in curvilinear coordinate system - w wall shear stress at pointB of figure 1 - unperturbed wall shear rate - density of fluid - viscosity of fluid - 2 second normal-stress coefficient - ij radius of curvature of surface of constantq i in theq j direction  相似文献   

20.
The flow of a viscoelastic fluid through a microfluidic flow-focusing device is investigated numerically with a finite-volume code using the upper-convected Maxwell (UCM) and Phan-Thien–Tanner (PTT) models. The conceived device is shaped much like a conventional planar “cross-slot” except for comprising three inlets and one exit arm. Strong viscoelastic effects are observed as a consequence of the high deformation rates. In fact, purely elastic instabilities that are entirely absent in the corresponding Newtonian fluid flow are seen to occur as the Deborah number (De) is increased above a critical threshold. From two-dimensional numerical simulations we are able to distinguish two types of instability, one in which the flow becomes asymmetric but remains steady, and a subsequent instability at higher De in which the flow becomes unsteady, oscillating in time. For the UCM model, the effects of the geometric parameters of the device (e.g. the relative width of the entrance branches, WR) and of the ratio of inlet average velocities (VR) on the onset of asymmetry are systematically examined. We observe that for high velocity ratios, the critical Deborah number is independent of VR (e.g. Dec ≈ 0.33 for WR = 1), but depends non-monotonically on the relative width of the entrance branches. Using the PTT model we are able to demonstrate that the extensional viscosity and the corresponding very large stresses are decisive for the onset of the steady-flow asymmetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号