首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
In this paper, we establish two families of approximations for the gamma function: $$ \begin{array}{lll} {\varGamma}(x+1)&=\sqrt{2\pi x}{\left({\frac{x+a}{{\mathrm{e}}}}\right)}^x {\left({\frac{x+a}{x-a}}\right)}^{-\frac{x}{2}+\frac{1}{4}} {\left({\frac{x+b}{x-b}}\right)}^{\sum\limits_{k=0}^m\frac{{\beta}_k}{x^{2k}}+O{{\left(\frac{1}{x^{2m+2}}\right)}}},\\ {\varGamma}(x+1)&=\sqrt{2\pi x}\cdot(x+a)^{\frac{x}{2}+\frac{1}{4}}(x-a)^{\frac{x}{2}-\frac{1}{4}} {\left({\frac{x-1}{x+1}}\right)}^{\frac{x^2}{2}}\\ &\quad\times {\left({\frac{x-c}{x+c}}\right)}^{\sum\limits_{k=0}^m\frac{{\gamma}_k}{x^{2k}}+O{\left({\frac{1}{x^{2m+2}}}\right)}}, \end{array}$$ where the constants ${\beta }_k$ and ${\gamma }_k$ can be determined by recurrences, and $a$ , $b$ , $c$ are parameters. Numerical comparison shows that our results are more accurate than Stieltjes, Luschny and Nemes’ formulae, which, to our knowledge, are better than other approximations in the literature.  相似文献   

2.
In this paper, we consider the 2D Skyrme model $$E(u)=\frac{1}{2} \int\limits_{R^2}|du|^2dx+\frac{\lambda}{4} \int\limits_{R^2}|du\wedge du|^2dx+\frac{\mu}{16} \int\limits_{R^2}|u-{\bf{n}}|^4dx,$$ where ?? and??? > 0 are positive coupling constants and n = (0, 0, 1) is the north pole of S 2. We derive a lower bound of 2D Skyrme model. Using this estimate, we prove the existence of 2D Skyrmion for any positive coupling constants ??, ??.  相似文献   

3.
We obtain a sharp Remez inequality for the trigonometric polynomial T n of degree n on [0,2π): $$\|T_n \|_{L_\infty([0,2\pi))} \le \biggl(1+2\tan^2 \frac{n\beta}{4m} \biggr) { \|T_n \|_{L_\infty ([0,2\pi) \setminus B )}}, $$ where $\frac{2\pi}{m}$ is the minimal period of T n and $|B|=\beta<\frac {2\pi m}{n}$ is a measurable subset of $\mathbb {T}$ . In particular, this gives the asymptotics of the sharp constant in the Remez inequality: for a fixed n, $$\mathcal{C}(n, \beta)=1+ \frac{(n\beta)^2}{8} +O \bigl(\beta^4\bigr), \quad\beta \to0, $$ where $$\mathcal{C}(n,\beta):= \sup_{|B|=\beta}\sup_{T_n} \frac{ \|T_n \|_{L_\infty([0,2\pi ))}}{ \|T_n \|_{L_\infty ([0,2\pi) \setminus B )}}. $$ We also obtain sharp Nikol’skii’s inequalities for the Lorentz spaces and net spaces. Multidimensional variants of Remez and Nikol’skii’s inequalities are investigated.  相似文献   

4.
Let α and s be real numbers satisfying 0<s<α<n. We are concerned with the integral equation $$u(x)=\int_{R^n}\frac{u^p(y)}{|x-y|^{n-\alpha}|y|^s}dy, $$ where \(\frac{n-s}{n-\alpha}< p< \alpha^{*}(s)-1\) with \(\alpha^{*}(s)=\frac{2(n-s)}{n-\alpha}\) . We prove the nonexistence of positive solutions for the equation and establish the equivalence between the above integral equation and the following partial differential equation $$\begin{aligned} (-\Delta)^{\frac{\alpha}{2}}u(x)=|x|^{-s}u^p. \end{aligned}$$   相似文献   

5.
Let (T t ) t?≥ 0 be a bounded analytic semigroup on L p (Ω), with 1?<?p?<?∞. Let ?A denote its infinitesimal generator. It is known that if A and A * both satisfy square function estimates ${\bigl\|\bigl(\int_{0}^{\infty} \vert A^{\frac{1}{2}} T_t(x)\vert^2 {\rm d}t \bigr)^{\frac{1}{2}}\bigr\|_{L^p} \lesssim \|x\|_{L^p}}$ and ${\bigl\|\bigl(\int_{0}^{\infty} \vert A^{*\frac{1}{2}} T_t^*(y) \vert^2 {\rm d}t \bigr)^{\frac{1}{2}}\bigr\|_{L^{p^\prime}} \lesssim \|y\|_{L^{p^\prime}}}$ for ${x\in L^p(\Omega)}$ and ${y\in L^{p^\prime}(\Omega)}$ , then A admits a bounded ${H^{\infty}(\Sigma_\theta)}$ functional calculus for any ${\theta>\frac{\pi}{2}}$ . We show that this actually holds true for some ${\theta<\frac{\pi}{2}}$ .  相似文献   

6.
Let Ω be a bounded domain in ${\mathbb{R}^2}$ with smooth boundary. We consider the following singular and critical elliptic problem with discontinuous nonlinearity: $$(P_\lambda)\left \{\begin{array}{ll} - \Delta u = \lambda \left(\frac{m(x, u) e^{\alpha{u}^2}}{|x|^{\beta}} + u^{q}g(u - a)\right),\quad{u} > 0 \quad {\rm in} \quad \Omega\\u \quad \quad = 0\quad {\rm on} \quad \partial \Omega \end{array}\right.$$ where ${0\leq q < 1 ,0< \alpha\leq4\pi}$ and ${\beta \in [0, 2)}$ such that ${\frac{\beta}{2} + \frac{\alpha}{4\pi} \leq 1}$ and ${{g(t - a) = \left\{\begin{array}{ll}1, t \leq a\\ 0, t > a.\end{array}\right.}}$ Under the suitable assumptions on m(x, t) we show the existence and multiplicity of solutions for maximal interval for λ.  相似文献   

7.
In this paper, some improved regularity criteria for the 3D viscous MHD equations are established in multiplier spaces. It is proved that if the velocity field satisfies $$u \in L^{\frac{2}{1-r}}\left( 0,T,\overset{.}{X}_{r}(\mathbb{R}^{3}) \right) \quad {\rm with}\,r\in [0,1[,$$ or the gradient field of velocity satisfies $$\nabla u\in L^{\frac{2}{2-\gamma}}\left(0,T,\overset{.}{X}_{\gamma}(\mathbb{R}^{3}) \right) \quad {\rm with}\,\gamma \in \left[ 0,1\right],$$ then the solution remains smooth on [0, T].  相似文献   

8.
In this article, we discuss the recent work of Lin and Zhang on the Liouville system of mean field equations: $$\Delta{u}_i+\sum_{j}a_{ij}\rho_{j} ({\frac{{h_j}e^{u_{j}}}{\int_{M}{h_{j}e^{u_{j}}}}-{\frac{1}{|M|}}})=0\,\, \quad{\rm on}\, M,$$ where M is a compact Riemann surface and |M| is the area, or $$\Delta{u}_i+\sum_{j}a_{ij}\rho_{j} \frac{{h_j}e^{u_{j}}}{\int_{\Omega}{h_{j}e^{u_{j}}}}=0\,\, \quad{\rm in}\, \Omega,$$ $${u_j}=0,\,\, \quad{\rm on}\, \partial\Omega, $$ where ?? is a bounded domain in ${\mathbb{R}^2}$ . Among other things, we completely determine the set of non-critical parameters and derive a degree counting formula for these systems.  相似文献   

9.
For a bounded, open subset Ω of ${\mathbb{R}^{N}}$ with N > 2, and a measurable function a(x) satisfying 0 < α ≤ a(x) ≤ β, a.e. ${x \in \Omega}$ , we study the existence of positive solutions of the Euler–Lagrange equation associated to the non-differentiable functional $$\begin{array}{ll}J(v) = \frac{1}{2} \int \limits_{\Omega} [a(x)+|v|^{\gamma}]| \nabla v|^{2}- \frac{1}{p} \int \limits_{\Omega}(v_{+})^p,\end{array}$$ if γ > 0 and p > 1. Special emphasis is placed on the case ${2^{*} < p < \frac{2^{*}}{2} ( \gamma +2 )}$ .  相似文献   

10.
In this paper, we are concerned with the multibump solutions for the following quasilinear Schrödinger system in ${\mathbb{R}^N}$ : $$\left\{\begin{array}{ll}-\Delta{u} + \lambda{a(x)u} - \frac{1}{2}(\Delta|u|^2)u = \frac{2\alpha}{\alpha + \beta}|u|^{\alpha-2}|\upsilon|^\beta u, \\-\Delta{\upsilon} + \lambda{b(x)\upsilon} - \frac{1}{2}(\Delta|\upsilon|^2)\upsilon = \frac{2\beta}{\alpha + \beta}|u|^\alpha|\upsilon|^{\beta-2} \upsilon, \\u(x) \rightarrow 0, \upsilon(x) \rightarrow 0 \quad as|x| \rightarrow \infty,\end{array}\right.$$ where λ > 0 is a parameter, α, β > 2 satisfying αβ < 2 · 2*, here ${2^{*} = \frac{2N}{N-2}}$ is the critical Sobolev exponent for ${N \geq 3}$ and a(x), b(x) are nonnegative potentials. Using variational methods, we prove that if the zero sets of a(x) and b(x) have several common isolated connected components ${\Omega_{1}, . . . ,\Omega_{k}}$ such that the interior of ${\Omega_{i} (i = 1, 2, . . . , k)}$ is not empty and ${\partial\Omega_{i} (i = 1, 2, . . . , k)}$ is smooth, then for λ sufficiently large, the system admits, for any nonempty subset ${J \subset \{1, 2, . . . , k\}}$ , a solution which is trapped in a neighborhood of ${\cup_{j\epsilon{J}} \Omega_{j}}$ .  相似文献   

11.
We introduce an irrational factor of order k defined by \({I_{k}(n) ={\prod_{i=1}^{l}} p_{i}^{\beta_{i}}}\) , where \({n = \prod_{i=1}^{l} p_{i}^{\alpha_{i}}}\) is the factorization of n and \({\beta_{i} = \left\{\begin{array}{ll}\alpha_i, \quad \quad {\rm if} \quad \alpha_i < k \\ \frac{1}{\alpha_i},\quad \quad {\rm if} \quad \alpha_i \geqq k \end{array}\right.}\) . It turns out that the function \({\frac{I_{k} (n)}{n}}\) well approximates the characteristic function of k-free integers. We also derive asymptotic formulas for \({\prod_{v=1}^{n} I_{k}(v)^{\frac{1}{n}}, \sum_{n \leqq x} I_{k}(n)}\) and \({\sum_{n \leqq x} (1 - \frac{n}{x}) I_{k}(n)}\) .  相似文献   

12.
We show that smooth, radially symmetric wave maps U from ${\mathbb {R}^{2+1}}$ to a compact target manifold (N, where ? r U and ? t U have compact support for any fixed time, scatter. The result will follow from the work of Christodoulou and Tahvildar-Zadeh, and Struwe, upon proving that for ${(\lambda^{\prime} \in (0,1),}$ energy does not concentrate in the set $$K_{\frac{5}{8}T,\frac{7}{8}T}^{\lambda^{\prime}} = \{(x,t) \in \mathbb{R}^{2+1} \vert \quad|x| \leq \lambda^{\prime} t, t \in [(5/8)T,(7/8)T] \}.$$   相似文献   

13.
In this paper we deal with solutions of problems of the type $$\left\{\begin{array}{ll}-{\rm div} \Big(\frac{a(x)Du}{(1+|u|)^2} \Big)+u = \frac{b(x)|Du|^2}{(1+|u|)^3} +f \quad &{\rm in} \, \Omega,\\ u=0 &{\rm on} \partial \, \Omega, \end{array} \right.$$ where ${0 < \alpha \leq a(x) \leq \beta, |b(x)| \leq \gamma, \gamma > 0, f \in L^2 (\Omega)}$ and Ω is a bounded subset of ${\mathbb{R}^N}$ with N ≥ 3. We prove the existence of at least one solution for such a problem in the space ${W_{0}^{1, 1}(\Omega) \cap L^{2}(\Omega)}$ if the size of the lower order term satisfies a smallness condition when compared with the principal part of the operator. This kind of problems naturally appears when one looks for positive minima of a functional whose model is: $$J (v) = \frac{\alpha}{2} \int_{\Omega}\frac{|D v|^2}{(1 + |v|)^{2}} + \frac{12}{\int_{\Omega}|v|^2} - \int_{\Omega}f\,v , \quad f \in L^2(\Omega),$$ where in this case a(x) ≡ b(x) = α > 0.  相似文献   

14.
In the present study, we consider isometric immersions ${f : M \rightarrow \tilde{M}(c)}$ of (2n + 1)-dimensional invariant submanifold M 2n+1 of (2m + 1) dimensional Sasakian space form ${\tilde{M}^{2m+1}}$ of constant ${ \varphi}$ -sectional curvature c. We have shown that if f satisfies the curvature condition ${\overset{\_}{R}(X, Y) \cdot \sigma =Q(g, \sigma)}$ then either M 2n+1 is totally geodesic, or ${||\sigma||^{2}=\frac{1}{3}(2c+n(c+1)),}$ or ${||\sigma||^{2}(x) > \frac{1}{3}(2c+n(c+1)}$ at some point x of M 2n+1. We also prove that ${\overset{\_ }{R}(X, Y)\cdot \sigma = \frac{1}{2n}Q(S, \sigma)}$ then either M 2n+1 is totally geodesic, or ${||\sigma||^{2}=-\frac{2}{3}(\frac{1}{2n}\tau -\frac{1}{2}(n+2)(c+3)+3)}$ , or ${||\sigma||^{2}(x) > -\frac{2}{3}(\frac{1}{2n} \tau (x)-\frac{1}{2} (n+2)(c+3)+3)}$ at some point x of M 2n+1.  相似文献   

15.
The following Ginzburg–Landau energy in the absence of a magnetic field $$E_\varepsilon(\psi) = \int\limits_G\left[\frac{1}{2}|\nabla\psi|^2 + \frac{1}{4\varepsilon^2}(1-|\psi|^2)^2\right]{\rm d}x$$ was well studied during recent twenty years. Here, ${G \subset \mathbf{R}^2}$ is a bounded smooth domain, ${\psi}$ is an order parameter, ${\varepsilon >0 }$ . In particular, several global properties including the weighted energy estimation, the concentration compactness properties and the quantization effect of the energy had been established. This paper is concerned with another Ginzburg–Landau type free energy associated with p-wave superconductivity $$E_\varepsilon (\psi, u; G) = \frac{1}{2} \int\limits_G(|\nabla \psi|^2 + |\nabla u|^2 - |\nabla|\psi||^2){\rm d}x + \frac{1}{4\varepsilon^2} \int\limits_G(1-|\psi|^2)^2{\rm d}x.$$ Here, u is also an order parameter. We will prove that those global properties still hold for this more complicated energy functional. Such global properties describe the locations of the regular and the singular domains, and also show the convergence relation between the Ginzburg–Landau minimizers and the harmonic maps.  相似文献   

16.
In this paper, we study the existence of minimizers for $$F(u) = \frac{1}{2} \int_{\mathbb{R}^3} |\nabla u|^{2} {\rm d}x + \frac{1}{4} \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \frac{| u(x)|^2 | u(y)|^2}{| x-y|} {\rm d}x{\rm d}y-\frac{1}{p} \int_{\mathbb{R}^3}|u|^p {\rm d}x$$ on the constraint $$S(c) = \{u \in H^1(\mathbb{R}^3) : \int_{\mathbb{R}^3}|u|^2 {\rm d}x = c\}$$ , where c >  0 is a given parameter. In the range ${p \in [3,\frac{10}{3}]}$ , we explicit a threshold value of c >  0 separating existence and nonexistence of minimizers. We also derive a nonexistence result of critical points of F(u) restricted to S(c) when c >  0 is sufficiently small. Finally, as a by-product of our approaches, we extend some results of Colin et al. (Nonlinearity 23(6):1353–1385, 2010) where a constrained minimization problem, associated with a quasi-linear equation, is considered.  相似文献   

17.
In this paper, we are able to sharpen Hua??s result by proving that almost all integers satisfying some necessary congruence conditions can be represented as $$N=p_1^3+ \cdots+p_s^3 \quad \mbox{with } \biggl \vert p_j-\sqrt[3]{\frac {N}{s}}\biggr \vert \leqslant U, j=1,\ldots, s, $$ where p j are primes and $U=N^{\frac{1}{3}-\delta_{s}+\varepsilon }$ with $\delta_{s}=\frac{s-4}{6s+72}$ , where s=5,6,7,8.  相似文献   

18.
Let Σ be an immersed symplectic surface in CP 2 with constant holomorphic sectional curvature k > 0. Suppose Σ evolves along the mean curvature flow in CP 2. In this paper, we show that the symplectic mean curvature flow exists for long time and converges to a holomorphic curve if the initial surface satisfies ${|A|^2 \leq \lambda|H|^2 + \frac{2\lambda-1}{\lambda}k}$ and ${\cos\alpha\geq\sqrt{\frac{7\lambda-3}{3\lambda}}\left(\frac{1}{2} < \lambda\leq\frac{2}{3}\right) {\rm or} |A|^2\leq \frac{2}{3}|H|^2+\frac{4}{5}k\cos\alpha\, {\rm and} \cos\alpha\geq 1-\varepsilon}$ , for some ${\varepsilon}$ .  相似文献   

19.
Ω-theorems for some automorphic L-functions and, in particular, for the Rankin?Selberg L-function L(s, f × f) are considered. For example, as t tends to infinity, $$ \log \left| {L\left( {\frac{1}{2}+it,f\times f} \right)} \right|={\varOmega_{+}}\left( {{{{\left( {\frac{{\log t}}{{\log\;\log t}}} \right)}}^{1/2 }}} \right) $$ and $$ \log \left| {L\left( {{\sigma_0}+it,f\times f} \right)} \right|={\varOmega_{+}}\left( {{{{\left( {\frac{{\log t}}{{\log\;\log t}}} \right)}}^{{1-{\sigma_0}}}}} \right) $$ For a fixed σ 0 $ \left( {\frac{1}{2},1} \right) $ . Bibliography: 15 titles.  相似文献   

20.
Let fL 1( $ \mathbb{T} $ ) and assume that $$ f\left( t \right) \sim \frac{{a_0 }} {2} + \sum\limits_{k = 1}^\infty {\left( {a_k \cos kt + b_k \sin kt} \right)} $$ Hardy and Littlewood [1] proved that the series $ \sum\limits_{k = 1}^\infty {\frac{{a_k }} {k}} $ converges if and only if the improper Riemann integral $$ \mathop {\lim }\limits_{\delta \to 0^ + } \int_\delta ^\pi {\frac{1} {x}} \left\{ {\int_{ - x}^x {f(t)dt} } \right\}dx $$ exists. In this paper we prove a refinement of this result.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号