首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let X i = {X i (t), tT} be i.i.d. copies of a centered Gaussian process X = {X(t), tT} with values in\( {\mathbb{R}^d} \) defined on a separable metric space T. It is supposed that X is bounded. We consider the asymptotic behavior of convex hulls
$ {W_n} = {\text{conv}}\left\{ {{X_1}(t), \ldots, {X_n}(t),\,\,t \in T} \right\} $
and show that, with probability 1,
$ \mathop {{\lim }}\limits_{n \to \infty } \frac{1}{{\sqrt {{2\ln n}} }}{W_n} = W $
(in the sense of Hausdorff distance), where the limit shape W is defined by the covariance structure of X: W = conv{K t , tT}, Kt being the concentration ellipsoid of X(t). We also study the asymptotic behavior of the mathematical expectations E f(W n ), where f is an homogeneous functional.
  相似文献   

2.
Let {X i = (X 1,i ,...,X m,i )?, i ≥ 1} be a sequence of independent and identically distributed nonnegative m-dimensional random vectors. The univariate marginal distributions of these vectors have consistently varying tails and finite means. Here, the components of X 1 are allowed to be generally dependent. Moreover, let N(·) be a nonnegative integer-valued process, independent of the sequence {X i , i ≥ 1}. Under several mild assumptions, precise large deviations for S n = Σ i=1 n X i and S N(t) = Σ i=1 N(t) X i are investigated. Meanwhile, some simulation examples are also given to illustrate the results.  相似文献   

3.
A general theorem (principle of a priori boundedness) on solvability of the boundary value problem dx = dA(t) · f(t, x), h(x) = 0 is established, where f: [a, b]×R n → R n is a vector-function belonging to the Carathéodory class corresponding to the matrix-function A: [a, b] → R n×n with bounded total variation components, and h: BVs([a, b],R n ) → R n is a continuous operator. Basing on the mentioned principle of a priori boundedness, effective criteria are obtained for the solvability of the system under the condition x(t1(x)) = B(x) · x(t 2(x))+c 0, where t i: BVs([a, b],R n ) → [a, b] (i = 1, 2) and B: BVs([a, b], R n ) → R n are continuous operators, and c 0 ∈ R n .  相似文献   

4.
In 1982 Thomassen asked whether there exists an integer f(k,t) such that every strongly f(k,t)-connected tournament T admits a partition of its vertex set into t vertex classes V 1,…V t such that for all i the subtournament T[V i] induced on T by V i is strongly k-connected. Our main result implies an affirmative answer to this question. In particular we show that f(k, t)=O(k 7 t 4) suffices. As another application of our main result we give an affirmative answer to a question of Song as to whether, for any integer t, there exists aninteger h(t) such that every strongly h(t)-connected tournament has a 1-factor consisting of t vertex-disjoint cycles of prescribed lengths. We show that h(t)=O(t 5) suffices.  相似文献   

5.
Let {X(t), t ≥ 0} be a centered stationary Gaussian process with correlation r(t)such that 1-r(t) is asymptotic to a regularly varying function. With T being a nonnegative random variable and independent of X(t), the exact asymptotics of P(sup_(t∈[0,T])X(t) x) is considered, as x →∞.  相似文献   

6.
Clifford Smyth 《Order》2018,35(2):393-402
We present a probabilistic characterization of the dominance order on partitions. Let ν be a partition and Y ν its Ferrers diagram, i.e. a stack of rows of cells with row i containing ν i cells. Let the cells of Y ν be filled with independent and identically distributed draws from the random variable X = B i n(r, p) with r ≥ 1 and p ∈ (0, 1). Given j, t ≥ 0, let P(ν, j, t) be the probability that the sum of all the entries in Y ν is j while the sum of the entries in each row of Y ν is no more than t. It is shown that if ν and μ are two partitions of n, ν dominates μ if and only if P(ν, j, t) ≤ P(μ, j, t) for all j, t ≥ 0. It is shown that the same result holds if X is any log-concave integer valued random variable with {i : P(X = i) > 0} = {0, 1,…,r} for some r ≥ 1.  相似文献   

7.
Order-sharp estimates are established for the best N-term approximations of functions from Nikol’skii–Besov type classes Bpqsm(Tk) with respect to the multiple trigonometric system T(k) in the metric of Lr(Tk) for a number of relations between the parameters s, p, q, r, and m (s = (s1,..., sn) ∈ R+n, 1 ≤ p, q, r ≤ ∞, m = (m1,..., mn) ∈ Nn, k = m1 +... + mn). Constructive methods of nonlinear trigonometric approximation—variants of the so-called greedy algorithms—are used in the proofs of upper estimates.  相似文献   

8.
Let T t : XX be a C 0-semigroup with generator A. We prove that if the abscissa of uniform boundedness of the resolvent s 0(A) is greater than zero then for each nondecreasing function h(s): ?+R + there are x′X′ and xX satisfying ∫ 0 h(|〈x′, T x x〉|)dt = ∞. If i? ∩ Sp(A) ≠ Ø then such x may be taken in D(A ).  相似文献   

9.
Spectral theory of isotropic random fields in Euclidean space developed by M. I. Yadrenko is exploited to find a solution to the problem of optimal linear estimation of the functional
$$ A\zeta ={\sum\limits_{t=0}^{\infty}}\,\,\,{\int_{S_n}} \,\,a(t,x)\zeta (t,x)\,m_n(dx) $$
which depends on unknown values of a periodically correlated (cyclostationary with period T) with respect to time isotropic on the sphere S n in Euclidean space E n random field ζ(t, x), t?∈?Z, x?∈?S n . Estimates are based on observations of the field ζ(t, x)?+?θ(t, x) at points (t, x), t?=???1,???2, ..., x?∈?S n , where θ(t, x) is an uncorrelated with ζ(t, x) periodically correlated with respect to time isotropic on the sphere S n random field. Formulas for computing the value of the mean-square error and the spectral characteristic of the optimal linear estimate of the functional are obtained. The least favourable spectral densities and the minimax (robust) spectral characteristics of the optimal estimates of the functional are determined for some special classes of spectral densities.
  相似文献   

10.
We prove the existence of a completely integrable Pfaffian system ?x/?t i = A i (t)x, xR n , t = (t 1, t 2, t 3) ∈ R + 3 , i = 1, 2, 3, with infinitely differentiable bounded coefficients and with lower characteristic set of positive three-dimensional Lebesgue measure.  相似文献   

11.
A (v, β o , μ)-design over regular graph G = (V, E) of degree d is an ordered pair D = (V, B), where |V| = v and B is the set of maximum independent sets of G called blocks such that if i, jV, ij and if i and j are not adjacent in G then there are exactly μ blocks containing i and j. In this paper, we study (v, β o , μ)-designs over the graphs K n × K n , T(n)-triangular graphs, L 2(n)-square lattice graphs, Petersen graph, Shrikhande graph, Clebsch graph and the Schläfli graph and non-existence of (v, β o , μ)-designs over the three Chang graphs T 1(8), T 2(8) and T 3(8).  相似文献   

12.
We consider the following Turán-type problem: given a fixed tournament H, what is the least integer t = t(n,H) so that adding t edges to any n-vertex tournament, results in a digraph containing a copy of H. Similarly, what is the least integer t = t(T n ,H) so that adding t edges to the n-vertex transitive tournament, results in a digraph containing a copy of H. Besides proving several results on these problems, our main contributions are the following:
  • Pach and Tardos conjectured that if M is an acyclic 0/1 matrix, then any n × n matrix with n(log n) O(1) entries equal to 1 contains the pattern M. We show that this conjecture is equivalent to the assertion that t(T n ,H) = n(log n) O(1) if and only if H belongs to a certain (natural) family of tournaments.
  • We propose an approach for determining if t(n,H) = n(log n) O(1). This approach combines expansion in sparse graphs, together with certain structural characterizations of H-free tournaments. Our result opens the door for using structural graph theoretic tools in order to settle the Pach–Tardos conjecture.
  相似文献   

13.
We study connecting orbits of a natural Lagrangian system defined on a complete Riemannian manifold subjected to the action of a nonstationary force field with potential U(q, t) = f(t)V(q). It is assumed that the factor f(t) tends to ∞ as t→±∞ and vanishes at a unique point t 0 ∈ ?. Let X +, X ? denote the sets of isolated critical points of V (x) at which U(x, t) as a function of x distinguishes its maximum for any fixed t > t 0 and t < t 0, respectively. Under nondegeneracy conditions on points of X ± we prove the existence of infinitely many doubly asymptotic trajectories connecting X ? and X +.  相似文献   

14.
Let (M m , T) be a smooth involution on a closed smooth m-dimensional manifold and F = ∪ j=0 n F j (nm) its fixed point set, where F j denotes the union of those components of F having dimension j. The famous Five Halves Theorem of J. Boardman, announced in 1967, establishes that, if F is nonbounding, then m ≤ 5/2n. In this paper we obtain an improvement of the Five Halves Theorem when the top dimensional component of F, F n , is nonbounding. Specifically, let ω = (i 1, i 2, …, i r ) be a non-dyadic partition of n and s ω (x 1, x 2, …, x n ) the smallest symmetric polynomial over Z 2 on degree one variables x 1, x 2, …, x n containing the monomial \(x_1^{i_1 } x_2^{i_2 } \cdots x_r^{i_r }\). Write s ω (F n ) ∈ H n (F n , Z 2) for the usual cohomology class corresponding to s ω (x 1, x 2, …, x n ), and denote by ?(F n ) the minimum length of a nondyadic partition ω with s ω (F n ) ≠ 0 (here, the length of ω = (i 1, i 2, …, i r ) is r). We will prove that, if (M m , T) is an involution for which the top dimensional component of the fixed point set, F n , is nonbounding, then m ≤ 2n + ?(F n ); roughly speaking, the bound for m depends on the degree of decomposability of the top dimensional component of the fixed point set. Further, we will give examples to show that this bound is best possible.  相似文献   

15.
Let c,s,t be positive integers. The (c,s,t)-Ramsey game is played by Builder and Painter. Play begins with an s-uniform hypergraph G 0=(V,E 0), where E 0=Ø and V is determined by Builder. On the ith round Builder constructs a new edge e i (distinct from previous edges) and sets G i =(V,E i ), where E i =E i?1∪{e i }. Painter responds by coloring e i with one of c colors. Builder wins if Painter eventually creates a monochromatic copy of K s t , the complete s-uniform hypergraph on t vertices; otherwise Painter wins when she has colored all possible edges.We extend the definition of coloring number to hypergraphs so that χ(G)≤col(G) for any hypergraph G and then show that Builder can win (c,s,t)-Ramsey game while building a hypergraph with coloring number at most col(K s t ). An important step in the proof is the analysis of an auxiliary survival game played by Presenter and Chooser. The (p,s,t)-survival game begins with an s-uniform hypergraph H 0 = (V,Ø) with an arbitrary finite number of vertices and no edges. Let H i?1=(V i?1,E i?1) be the hypergraph constructed in the first i ? 1 rounds. On the i-th round Presenter plays by presenting a p-subset P i ?V i?1 and Chooser responds by choosing an s-subset X i ?P i . The vertices in P i ? X i are discarded and the edge X i added to E i?1 to form E i . Presenter wins the survival game if H i contains a copy of K s t for some i. We show that for positive integers p,s,t with sp, Presenter has a winning strategy.  相似文献   

16.
We prove that the mixed problem for the Klein–Gordon–Fock equation u tt (x, t) ? u xx (x, t) + au(x, t) = 0, where a ≥ 0, in the rectangle Q T = [0 ≤ x ≤ l] × [0 ≤ tT] with zero initial conditions and with the boundary conditions u(0, t) = μ(t) ∈ L p [0, T ], u(l, t) = 0, has a unique generalized solution u(x, t) in the class L p (Q T ) for p ≥ 1. We construct the solution in explicit analytic form.  相似文献   

17.
Let X be a real normed space and let f: ? → X be a continuous mapping. Let T f (t 0) be the contingent of the graph G(f) at a point (t 0, f(t 0)) and let S + ? (0,∞) × X be the “right” unit hemisphere centered at (0, 0 X ). We show that
  1. 1.
    If dimX < ∞ and the dilation D(f, t 0) of f at t 0 is finite then T f (t 0) ∩ S + is compact and connected. The result holds for \(T_f (t_0 ) \cap \overline {S^ + } \) even with infinite dilation in the case f: [0,) → X.
     
  2. 2.
    If dimX = ∞, then, given any compact set F ? S +, there exists a Lipschitz mapping f: ? → X such that T f (t 0) ∩ S + = F.
     
  3. 3.
    But if a closed set F ? S + has cardinality greater than that of the continuum then the relation T f (t 0) ∩ S + = F does not hold for any Lipschitz f: ? → X.
     
  相似文献   

18.
We consider the following generalization of the Oberwolfach problem:”At a gathering there are n delegations each having m people. Is it possible to arrange a seating of mn people present at s round tables T 1, T 2, . . . , T s (where each T i can accommodate \( t_i\geq3 \) people and \( \sum t_i = mn \)) for k different meals so that each person has every other person not in the same delegation for a neighbor exactly λ times?” For λ= 1, Liu has obtained the complete solution to the problem when all tables accommodate the same number t of people. In this paper, we give the completesolution to the problem for \( \lambda\geq2 \) when all tables have uniform sizes t.  相似文献   

19.
The semi-Markov walk (X(t)) with two boundaries at the levels 0 and β > 0 is considered. The characteristic function of the ergodic distribution of the processX(t) is expressed in terms of the characteristics of the boundary functionals N(z) and S N(z), where N(z) is the firstmoment of exit of the random walk {Sn}, n ≥ 1, from the interval (?z, β ? z), z ∈ [0, β]. The limiting behavior of the characteristic function of the ergodic distribution of the process W β (t) = 2X(t)/β ? 1 as β → ∞ is studied for the case in which the components of the walk (η i) have a two-sided exponential distribution.  相似文献   

20.
Let M be a commutative, cancellative, atomic monoid and x a nonunit in M. We define ω(x)=n if n is the smallest positive integer with the property that whenever xa 1???a t , where each a i is an atom, there is a T?{1,2,…,t} with |T|≤n such that x∣∏kT a k . The ω-function measures how far x is from being prime in M. In this paper, we give an algorithm for computing ω(x) in any numerical monoid. Simple formulas for ω(x) are given for numerical monoids of the form 〈n,n+1,…,2n?1〉, where n≥3, and 〈n,n+1,…,2n?2〉, where n≥4. The paper then focuses on the special case of 2-generator numerical monoids. We give a formula for computing ω(x) in this case and also necessary and sufficient conditions for determining when x is an atom. Finally, we analyze the asymptotic behavior of ω(x) by computing \(\lim_{x\rightarrow \infty}\frac{\omega(x)}{x}\).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号