首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly (acrylate-co-imide)-based gel polymer electrolytes are synthesized by in situ free radical polymerization. Infrared spectroscopy confirms the complete polymerization of gel polymer electrolytes. The ionic conductivity of gel polymer electrolytes are measured as a function of different repeating EO units of polyacrylates. An optimal ionic conductivity of the poly (PEGMEMA1100-BMI) gel polymer electrolyte is determined to be 4.8 × 10–3 S/cm at 25 °C. The lithium transference number is found to be 0.29. The cyclic voltammogram shows that the wide electrochemical stability window of the gel polymer electrolyte varies from −0.5 to 4.20 V (vs. Li/Li+). Furthermore, we found the transport properties of novel gel polymer electrolytes are dependent on the EO design and are also related to the rate capability and the cycling ability of lithium polymer batteries. The relationship between polymer electrolyte design, lithium transport properties and battery performance are investigated in this research.  相似文献   

2.
The present report deals with some results on phase behavior, miscibility and phase separation for several polymer blends casting from solutions. These blends are grouped as the amorphous polymer blends, blends containing a crystalline polymer or two crystalline polymers. The blends of PMMA/PVAc were miscible and underwent phase separation at elevated temperature, exhibited LCST behavior. The benzoylated PPO has both UCST and LCST nature. For the systems composed of crystalline polymer poly(ethylene oxide) and amorphous polyurethane, of two crystalline polymers poly(-caprolactone) and poly[3,3,-bis-(chloromethyl) oxetane], appear a single Tg, indicating these blends are miscible. The interaction parameter B's were determined to be –14 J cm–3, –15 J cm–3 respectively. Phase separation of phenolphthalein poly(ether ether sulfone)/PEO blends were discussed in terms of thermal properties, such as their melting and crystallization behavior.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

3.

New polypyrrole (PPy)-derived polymer/ZrO2 nanocomposite materials are prepared by single-step oxidative polymerization of pyrrole (Py) and/or N-methylpyrrole (mPy) in the presence of HCl-functionalized ZrO2 nanoparticles and ammonium persulfate. The physicochemical features of the PPy–ZrO2, poly(Py-co-mPy)–ZrO2 and PmPy–ZrO2 hybrids were analyzed by XPS, FTIR, XRD and UV–Vis techniques. To explore the advantages of these nanocomposites for potential applications, their thermal, conductive and electrochemical properties were investigated. The characterization reveals that a chemical bonding, based on electrostatic interactions, is established between the polymers and the ZrO2 nanoparticles. Interestingly, it is found that the growth of polymer on the surface of Cl-functionalized ZrO2 becomes more significant as the Py moiety (–NH– species) content in the polymer increases. The thermal stability and conductivity of the polymers increase by hybridization with the ZrO2 nanoparticles. This is assigned to the affective interaction of the polymers with the ZrO2 nanoparticles. Particularly, the resulting nanocomposites keep high conductivities, ranging between 0.323 and 0.929 S cm−1. Finally, voltammetric characterization shows that the PPy–ZrO2 and poly(Py-co-mPy)–ZrO2 nanocomposites are electroactive, thus demonstrating their capability for electrochemical applications. These results highlight the great influence of the nanoparticle interface and the nature of monomer on the nanocomposite formation and properties.

  相似文献   

4.
Novel composite solid polymer electrolytes (CSPEs) and composite gel polymer electrolytes (CGPEs) have been prepared. CSPE consists of poly(ether-urethane) network polymer, which is superior to poly(ethylene oxide) in mechanical stability due to its cross-linked structure, modified montmorillonite (MMMT) and LiClO4, and CGPE with good mechanical strength comprises of the CSPE and LiClO4–PC (propylene carbonate) solution. The ionic conductivity can be enhanced after the addition of MMMT, and CGPE exhibits ionic conductivity in the order of 10−3 S/cm at room temperature. The temperature dependence of the ionic conductivity of the CSPE follows the Vogel–Tamman–Fulcher (VTF) equation. The effects of MMMT on the interactions in these systems and the possible conduction mechanisms are also discussed.  相似文献   

5.
The effect of the dispersion of zinc oxide (ZnO) nanoparticles in the zinc ion conducting gel polymer electrolyte is studied. Changes in the morphology/structure of the gel polymer electrolyte with the introduction of ZnO particles are distinctly observed using X-ray diffraction and scanning electron microscopy. The nanocomposites offer ionic conductivity values of >10?3 S cm?1 with good thermal and electrochemical stabilities. The variation of ionic conductivity with temperature follows the Vogel–Tamman–Fulcher behavior. AC impedance spectroscopy, cyclic voltammetry, and transport number measurements have confirmed Zn2+ ion conduction in the gel nanocomposites. An electrochemical stability window from ?2.25 to 2.25 V was obtained from voltammetric studies of nanocomposite films. The cationic (i.e., Zn2+ ion) transport number (t +) has been found to be significantly enhanced up to a maximum of 0.55 for the dispersion of 10 wt.% ZnO nanoparticles, indicating substantial enhancement in Zn2+ ion conductivity. The gel polymer electrolyte nanocomposite films with enhanced Zn2+ ion conductivity are useful as separators and electrolytes in Zn rechargeable batteries and other electrochemical applications.  相似文献   

6.
In the present work, a novel polymer electrolyte based on poly(methyl methacrylate) (PMMA)/layered lithium trivanadate (LiV3O8) nanocomposite has been investigated. X-ray diffraction (XRD) study shows that d-spacing is increased from 6.3?±?0.1 Å to 12.8?±?0.1 Å upon intercalation of the polymer into the layered LiV3O8. Room temperature ionic conductivity of the obtained nanocomposite gel polymer electrolyte is found to be superior to that of conventional PMMA-based gel polymer electrolyte. Enhancement in ionic conductivity of the nanocomposite gel electrolyte is attributed to the formation of a two-dimensional channel as a result of decreased interaction between Li+ and V3O 8 ? layers as confirmed by FTIR. SEM results show aggregation of nanocomposite particles resulting from extension of some of the polymer chains from interlayer to the edge providing paths for Li+ ion transport. Interfacial stability of nanocomposite gel electrolyte is also found to be better than that of the conventional PMMA-based gel polymer electrolyte.  相似文献   

7.
A series of all-solid polymer electrolytes were prepared by cross-linking new designed poly(organophosphazene) macromonomers. The ionic conductivities of these all-solid, dimensional steady polymer electrolytes were reported. The temperature dependence of ionic conductivity of the all-solid polymer electrolytes suggested that the ionic transport is correlated with the segmental motion of the polymer. The relationship between lithium salts content and ionic conductivity was discussed and investigated by Infrared spectrum. Furthermore, the polarity of the host materials was thought to be a key to the ionic conductivity of polymer electrolyte. The all-solid polymer electrolytes based on these poly(organophosphazenes) showed ionic conductivity of 10−4 S cm−1 at room temperature.  相似文献   

8.
A gel polymer electrolyte (GPE) was prepared by in-situ thermal polymerization of 1,3-butanediol diacrylate (BDDA) in a EC/EMC/DMC electrolyte solution at 100 °C. The GPE with 15 wt.% polymer content appears as apparently dry polymer with sufficient mechanical strength and shows a high ionic conductivity of 3.2×10–3 S cm–1 at 20 °C. The MCMB–LiCoO2 type polymer Li-ion batteries (PLIB) prepared using this in-situ internal polymerization method exhibit a very high initial charge–discharge efficiency of 92.1%, and can deliver 94.4% of its nominal capacity at 1.0 C rate and 70.7% of its room temperature capacity at –20 °C. Also, the PLIB cells show very good cycling ability with >85% capacity retention after 300 cycles. The excellent charge–discharge properties of the PLIB cells are attributed to the integrated structure in which the polymer matrix spreads over entire region of the cell acting as a strong binder and electrolyte carrier to produce a stabilized electrode–electrolyte interface. In addition, the fabricating process of the polymer cell is quite simple and convenient for practical applications.  相似文献   

9.
A variety of disubstituted (double-comb) polysiloxane polymers have been prepared containing linear, branched, and cyclic oligoethyleneoxide units, –(OCH2CH2)n–, in the side chains and as part of the siloxane backbone. Copolymers, using mixtures of linear ethylene oxide side chains, were also synthesized. These polymers were doped with LiN(SO2CF3)2 (LiTFSI, 1) and conductivities of the polymer-salt complexes were determined as a function of temperature and doping level. The maximum conductivity of these polymers at 25 ° C was 2.99 ×10–4, for a copolymer containing equimolar amounts of side chains with n = 5 and 6.  相似文献   

10.
In this paper, the preparation and purification of an amorphous polymer network, poly[oxymethylene-oligo(oxyethylene)], designated as aPEO, are described. The flexible CH2CH2O segments in this host polymer combine appropriate mechanical properties, over a critical temperature range from −20 to 60 °C, with labile salt-host interactions. The intensity of these interactions is sufficient to permit solubilisation of the guest salt in the host polymer while permitting adequate mobility of ionic guest species. We also report the preparation and characterisation of a novel polymer electrolyte based on this host polymer with lithium tetrafluoroborate, LiBF4, as guest salt. Electrolyte samples are thermally stable up to approximately 250 °C and completely amorphous above room temperature. The electrolyte composition determines the glass transition temperature of electrolytes and was found to vary between −50.8 and −62.4 °C. The electrolyte composition that supports the maximum room temperature conductivity of this electrolyte system is n = 5 (2.10 × 10−5 S cm−1 at 25 °C). The electrochemical stability domain of the sample with n = 5 spans about 5 V measured against a Li/Li+ reference. This new electrolyte system represents a promising alternative to LiCF3SO3 and LiClO4-doped PEO analogues.  相似文献   

11.
A new ternary polymer electrolyte based on thermally cross-linked poly(urethane acrylate) (PUA), lithium bis(trifluoromethansulfonyl)imide (LiTFSI) and the ionic liquid N-butyl-N-methylpyrrolidinium TFSI (PYR14TFSI) was developed and tested for application in LMP batteries. The polymer electrolyte was a transparent yellow self-standing material with quite good mechanical properties, i.e., comparable to that of a flexible rubber. The room temperature ionic conductivity of the dry polymer electrolyte was found to be as high as 0.1 mS cm−1 for the compound containing 40 wt% of ionic liquid (PYR14TFSI) and a O/Li ratio of 15/1 (Li+ from LiTFSI). The thermal analysis of the new cross-linked electrolyte showed that it was homogeneous, amorphous and stable over a wide temperature range extending from −40 °C to 100 °C. The homogeneity of the polymer electrolyte was also confirmed by SEM analysis.  相似文献   

12.
Owing to their improved mechanical properties and good polymer miscibility, the blend gel polymer electrolytes of poly (vinylidene fluoride) (PVdF)-poly(ethyl methacrylate) (PEMA) have been prepared using solvent casting technique and characterized for their electrochemical performances. The electrolyte shows a maximum ionic conductivity of 1.5 × 10−4 S cm−1 at 301 K for the 90:10 blend ratio of PVdF:PEMA system with good transport property. The ionic conductivity is enhanced, in accompany with improved microstructural homogeneity, at low PEMA contents, while the decreased conductivity at high contents has been attributed to increasing crystalline PEMA domains. With the optimum PVdF:PEMA ratio, the complex system was found to facile reasonable ionic transference number and exhibit superior interfacial stability with Li electrode.  相似文献   

13.
Solid polymer electrolytes based on poly(vinyl pyrrolidone) (PVP) complexed with potassium periodide (KIO4) salt at different weight percent ratios were prepared using solution-cast technique. X-ray diffraction (XRD) results revealed that the amorphous nature of PVP polymer matrix increased with the increase of KIO4 salt concentration. The complexation of the salt with the polymer was confirmed by Fourier transform infrared (FTIR) spectroscopy studies. The ionic conductivity was found to increase with the increase of temperature as well as dopant concentration. The maximum ionic conductivity (1.421 × 10−4 S cm−1) was obtained for 15 wt% KIO4 doped polymer electrolyte at room temperature. The variation of ac conductivity with frequency obeyed Jonscher power law. The dynamical aspects of electrical transport process in the electrolyte were analyzed using complex electrical modulus. The peaks found in the electric modulus plots have been characterized in terms of the stretched exponential parameter. Optical absorption studies were performed in the wavelength range 200–600 nm and the absorption band energies (direct band gap and indirect band gap) values were evaluated. Using these polymer electrolyte films electrochemical cells were fabricated and their discharge characteristics were studied.  相似文献   

14.
A mixture of isomers 2,5-di(4-methyl-thiophen-2-yl)-1-(4-nitrophenyl)-1H-pyrrole, 2-(4-methyl-thiophen-2-yl)-5-(3-methyl-thiophen-2-yl)-1-(4-nitrophenyl)-1H-pyrrole and 2,5-di(3-methyl-thiophen-2-yl)-1-(4-nitrophenyl)-1H-pyrrole (Me-SNS(NO2)) were synthesized. Resulting monomers were polymerized chemically, producing soluble polymers in common organic solvents. The average molecular weight has been determined by gel permeation chromatography (GPC) as Mn=5.6×103 for the chemically synthesized polymer. The monomers were also electrochemically polymerized in the presence of LiClO4, NaClO4 (1:1) as the supporting electrolyte in acetonitrile solvent. Resulting polymers were characterized via CV, FTIR, NMR, SEM and UV–Vis spectroscopy. Spectroelectrochemistry analysis of polymer revealed Π–Π* transition below 300 nm, with an electronic band gap of 2.18 ev. Switching ability of the polymer was evaluated by kinetic study measuring percent transmittance (%T) at the maximum contrast point, indicating that poly(Me-SNS(NO2)) is a suitable material for electrochromic devices.  相似文献   

15.
New poly (vinylidenefluoride-co-hexafluoro propylene) (PVDF-HFP)/CeO2-based microcomposite porous polymer membranes (MCPPM) and nanocomposite porous polymer membranes (NCPPM) were prepared by phase inversion technique using N-methyl 2-pyrrolidone (NMP) as a solvent and deionized water as a nonsolvent. Phase inversion occurred on the MCPPM/NCPPM when it is treated by deionized water (nonsolvent). Microcomposite porous polymer electrolytes (MCPPE) and nanocomposite porous polymer electrolytes (NCPPE) were obtained from their composite porous polymer membranes when immersed in 1.0 M LiClO4 in a mixture of ethylene carbonate/dimethyl carbonate (EC/DMC) (v/v = 1:1) electrolyte solution. The structure and porous morphology of both composite porous polymer membranes was examined by scanning electron microscope (SEM) analysis. Thermal behavior of both MCPPM/NCPPM was investigated from DSC analysis. Optimized filler (8 wt% CeO2) added to the NCPPM increases the porosity (72%) than MCPPM (59%). The results showed that the NCPPE has high electrolyte solution uptake (150%) and maximum ionic conductivity value of 2.47 × 10−3 S cm−1 at room temperature. The NCPPE (8 wt% CeO2) between the lithium metal electrodes were found to have low interfacial resistance (760 Ω cm2) and wide electrochemical stability up to 4.7 V (vs Li/Li+) investigated by impedance spectra and linear sweep voltammetry (LSV), respectively. A prototype battery, which consists of NCPPE between the graphite anode and LiCoO2 cathode, proves good cycling performance at a discharge rate of C/2 for Li-ion polymer batteries.  相似文献   

16.
室温离子液体增塑的纳米复合聚合物电解质研究   总被引:2,自引:0,他引:2  
李朝晖  蒋晶  张汉平  吴宇平 《化学学报》2007,65(14):1333-1337
在室温离子液体N-乙基-N'-甲基咪唑四氟硼酸盐(EMIBF4)增塑的凝胶聚合物电解质中加入氧化铝纳米粒子, 制备了一种纳米复合聚合物电解质(nanocomposite polymer electrolyte, NCPE). 通过示差扫描量热(DSC)、X射线衍射(XRD)、热重分析(TGA)、电化学阻抗谱(EIS)等手段对其进行了表征. 结果显示, 随着氧化铝纳米粒子含量的增加, NCPE的结晶度降低, 离子导电率升高. 但是, 纳米粒子的加入量过大时反而引起NCPE的离子导电率降低. 当纳米粒子填充量为w=10%时, NCPE具有最高的室温离子导电率1.25×10-3 S•cm-1.  相似文献   

17.
A proton-conducting nanocomposite gel polymer electrolyte (GPE) system, [35{(25 poly(methylmethacrylate) (PMMA) + 75 poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-HFP))?+?xSiO2}?+?65{1 M NH4SCN in ethylene carbonate (EC) + propylene carbonate (PC)}], where x?=?0, 1, 2, 4, 6, 8, 10, and 12, has been reported. The free standing films of the gel electrolyte are obtained by solution cast technique. Films exhibit an amorphous and porous structure as observed from X-ray diffractometry (XRD) and scanning electron microscopy (SEM) studies. Fourier transform infrared spectrophotometry (FTIR) studies indicate ion–filler–polymer interactions in the nanocomposite blend GPE. The room temperature ionic conductivity of the gel electrolyte has been measured with different silica concentrations. The maximum ionic conductivity at room temperature has been observed as 4.3?×?10?3?S?cm?1 with 2 wt.% of SiO2 dispersion. The temperature dependence of ionic conductivity shows a typical Vogel-Tamman-Fulcher (VTF) behavior. The electrochemical potential window of the nanocomposite GPE film has been observed between ?1.6 V and 1.6 V. The optimized composition of the gel electrolyte has been used to fabricate a proton battery with Zn/ZnSO4·7H2O anode and PbO2/V2O5 cathode. The open circuit voltage (OCV) of the battery has been obtained as 1.55 V. The highest energy density of the cell has been obtained as 6.11 Wh?kg?1 for low current drain. The battery shows rechargeability up to 3 cycles and thereafter, its discharge capacity fades away substantially.  相似文献   

18.
Solid polymer electrolytes for Lithium batteries applications are commonly prepared by dissolving a lithium salt in poly(ethylene oxide) (PEO)‐based materials. Their performance is strongly related to the structure of the polymer network. In this article, a new salt‐in‐polymer electrolyte prepared by the fast and easy radical photopolymerization of PEO acrylate oligomers is studied. Here, a difunctional monomer used as the polymer backbone is copolymerized with monofunctional monomers of different length and concentration. Thus, the crosslinking density and conductivity are changed. These systems are investigated by a detailed NMR study yielding local dynamics and mass transport by temperature‐dependent spin‐lattice relaxation time and PFG‐NMR diffusion measurements for different nuclei (7Li and 19F). The results indicate that a sufficiently long monofunctional oligoether improves the properties, since it provides a lower crosslinking density as well as more coordinating oxygens for the Li ions. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1571–1580  相似文献   

19.
The novel single-ionic conductive gel polymer electrolyte was prepared from polyvinylidene fluoride (PVDF), propylene glycol carbonate (PC) and a new fluorine-containing ionomer. Cation-carbonyl interaction behavior, morphology and ionic conductive properties of this gel polymer electrolyte were studied by infrared spectra analysis (IR), nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and complex impedance analysis. The results showed that the fluorine-containing ionomer was miscible with both PVDF and PC, and that the carbonyl groups in the ionomer and PC could bond competitively with the cation. Both the content of fluorine-containing ionomer and the content of PC had a great effect on morphology and ionic conductive properties of the samples. For this new gel polymer electrolyte, an ionic conductivity of above 10−4 S cm−1 at room temperature could be reached, and this electrolyte system was a single-ionic kind gel polymer electrolyte with the transport number of the sodium ion exceed 0.99 (t+>0.99).  相似文献   

20.
The polymer electrolytes based on poly N-vinyl pyrrolidone (PVP) and ammonium thiocyanate (NH4SCN) with different compositions have been prepared by solution casting technique. The amorphous nature of the polymer electrolytes has been confirmed by XRD analysis. The shift in Tg values and the melting temperatures of the PVP-NH4SCN electrolytes shown by DSC thermo-grams indicate an interaction between the polymer and the salt. The dependence of Tg and conductivity upon salt concentration have been discussed. The conductivity analysis shows that the 20 mol% ammonium thiocyanate doped polymer electrolyte exhibit high ionic conductivity and it has been found to be 1.7 × 10−4 S cm−1, at room temperature. The conductivity values follow the Arrhenius equation and the activation energy for 20 mol% ammonium thiocyanate doped polymer electrolyte has been found to be 0.52 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号