首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Precipitate formation between phosphotungstic acid and crown ethers is a general phenomenon, producing solids with selective ion exchange behavior for the alkali metal ions. Distribution coefficients for Li+, Na+, K+, and Cs+ were measured for a series of these precipitates with different crown ethers. The sorption data are more complicated than for the corresponding phosphomolybdates and indicate a variability in the number of exchangeable sites with H+ and M+ concentration. The crown ether used markedly affects the cation selectivity of the phosphotungstate precipitates.  相似文献   

2.
Starting from ethyl propionylacetate, and ethyl 2‐ethylacetoacetate we prepared 4‐propyl‐7,8‐, 4‐propyl‐6,7‐, 3‐ethyl‐4‐methyl‐7,8‐ and 3‐ethyl‐4‐methyl‐6,7‐dihydroxy‐2H‐chromenones which were allowed to react with the bis‐dihalides or ditosylates of glycols in DMF/Na2CO3 to afford the 6,7‐ and 7,8‐chromenone derivatives of 12‐crown‐4, 15‐crown‐4 and 18‐crown‐6. The products were identified using ir, 13C and 1H nmr, ms and high resolution mass spectroscopy. The cation selectivities of chromenone crown ethers with Li+, Na+ and K+ cations were estimated from the steady state emission fluorescence spectra of free and cation complexed chromenone macrocyclic ethers in acetonitrile.  相似文献   

3.
A series of five monoaza crown ethers with 12-crown-4 and 15-crown-5 rings were studied with respect to their complexation of Li+, Na+, K+, Ca2+ and Sr2+ ions in 95/5 (v/v) methanol/ water. The complexes were studied by potentiometric titrations, with pH and sodium ion-selective electrodes. The acidity constants of the protonated ligands, and the stability constants of the 1:1 metal complexes were determined. The results show that the stability constants increase with the total number of oxygen atoms in the ligand, and mostly also in the sequence Li+ < K+ < Na+ < Ca2+ < Sr2+.  相似文献   

4.
The selectivity of eight lariat crown ethers in the sym‐dibenzo‐16‐crown‐5 series toward alkali metal ions was studied with electrospray ionization mass spectrometry under different conditions. With the exception of 2g , which is equally selective toward Na+ and Li+, all other lariat crown ethers show the best selectivity toward Li+ in methanol. Factors that influence the selectivity include the water content, counterions, nature of the side arms, and the externally added cations. Iodide gives the best Na+ selectivity with RI > RBr > RCl. Increased water content profoundly increases the Na+ selectivity when the side arm is hydrophilic and the steric hindrance is small. Externally added cations (Cs+ and/or Rb+) enhance the Na+ selectivity by exchanging the smaller Li+ from the cavity.  相似文献   

5.
Ultrahigh specific surface area muscovite with different ions at the surface (Li+, Na+, K+, Rb+, Cs+, Ca2+, Sr2+, Ba2+, Cu2+) was treated with aqueous solutions of low molecular weight crown ethers and polymers with crown ether substituents. The adsorption was assessed by UV analysis of the supernatant solution, and with TGA and IR spectroscopy of the mica solids. In contrast to other layered silicates, the low molecular weight crown ethers show no affinity to any of the muscovite surfaces. The polymers can adsorb, however, depending on the type of surface cation. The results indicate that at least some of the crown ether moieties are complexed to surface cations and that the diameter of the ions at the surface plays an important role in the adsorption process.  相似文献   

6.
Selectivity of electromembrane extractions (EMEs) was fine‐tuned by modifications of supported liquid membrane (SLM) composition using additions of various 18‐crown‐6 ethers into 1‐ethyl‐2‐nitrobenzene. Gradually increased transfer of K+, the cation that perfectly fits the cavity of 18‐crown‐6 ethers, was observed for EMEs across SLMs modified with increasing concentrations of 18‐crown‐6 ethers. A SLM containing 1% w/v of dibenzo‐18‐crown‐6 in 1‐ethyl‐2‐nitrobenzene exhibited excellent selectivity for EMEs of K+. The established host–guest interactions between crown ether cavities in the SLM and potassium ions in donor solution ensured their almost exhaustive transfer into acceptor solution (extraction recovery ~92%) within 30 min of EME at 50 V. Other inorganic cations were not transferred across the SLM (Ca2+ and Mg2+) or were transferred negligibly (NH4+, Na+; extraction recovery < 2%) and had only subtle effect on EMEs of K+. The high selectivity of the tailor‐made SLM holds a great promise for future applications in EMEs since the range of similar selective modifiers is very broad and may be applied in various fields of analytical chemistry.  相似文献   

7.
 The (1:1) Na+ equilibrium constants, Ke1, of macrocyclic ethers of [12]crown-4, [12]crown-5 and [18]crown-6 were determined with a Na+ ISE in the presence of a second cation e.g. Li+, K+ and Ca2+ in dioxane/water (50/50). We estimated the (1:1) equilibrium constants, K e2 of the macrocyclic ethers with Li+, K+ and Ca2+ by this way. The binding selectivity of a macrocyclic ether between two cations was estimated in the same binary solvent mixture where the water hydration role is diminished. Results showed clearly the effect of macrocyclic size and cation radii in a solution. Received October 27, 1998. Revision March 22, 1999.  相似文献   

8.
A novel method has been developed for the determination of the complexation constants of crown ethers with alkali salts. It comprises the equilibration of crown ether (1–7) solutions in deuterochloroform with solid trichloro(ethylene)platinum(II) salts (Na+, K+, Rb+, Cs+) and the PMR spectroscopic determination of the equilibrium ratio of complex to free crown ether from the relative intensities of the ethylene and crown ether protons. The solubility of uncomplexes salt was determined independently by atomic absorption spectrometry.The major advantages of this method over others are: (i) complexation constants in apolar solvents are obtained from a direct solid-liquid transition, (ii) the cation in the salt can be varied, and (iii) a simple detection technique can be used for monitoring the complexation.The PMR spectra indicate that there are three types of complex, depending on the ratio of the diameter of the crown ether cavity to that of the cation. If this ratio is small (<1), the aromatic ring is almost perpendicular to the flat polyether ring. With increasing ratio (~1.0) the flat polyether ring and the aromatic ring become almost coplanar in the complex. If the ratio is large (>1.0) the polyether ring is twisted around the cation.  相似文献   

9.
3‐Phenyl‐ and 3‐(p‐methoxyphenyl)‐7,8‐dihydroxy and ‐6,7‐dihydroxychromenones were prepared from ethyl 3‐oxo‐2‐phenylpropanoate, ethyl 3‐oxo‐2‐(4‐methoxyphenyl)‐propanoate and the trihydroxy benzenes in H2SO4. 3‐Aryl‐7,8‐ and 3‐aryl‐6,7‐dihydroxy‐2H‐chromenones reacted with the bis‐dihalides of poly‐glycols in DMF/MeCO3 to afford 12‐Crown‐4, 15‐Crown‐4 and 18‐Crown‐6‐chromenones. The products were identified with IR, 1H NMR, low and high resolution mass spectroscopy and elemental analysis. Some 1:1 cation association constants, Kb, of the 3‐phenyl chromenone crown ethers with Li+, Na+, K+ and Rb+ cations were studied by steady state emission fluorescence spectroscopy; Kb chromenone‐crown complexes displayed crown ether‐cation binding selectivity rules properly in acetonitrile.  相似文献   

10.
《Polyhedron》1999,18(20):2597-2603
Macrotetracyclic complexes of nickel(II) containing crown ethers as pendant arms, [Ni(B)](ClO4)2 and [Ni(C)](ClO4)2, were prepared and characterized. The binding constants of the complexes toward alkali metal ions are relatively small compared with those of free 15-crown-5 or 18-crown-6 and the reduction potentials of the [Ni(B)](ClO4)2 and [Ni(C)](ClO4)2 in the presence of alkali metal ions shift to the positive direction in the order Li+>Na+>K+ and K+>Na+>Li+, respectively.  相似文献   

11.
A series of double-armed benzo-15-crown-5 lariats (3–8) have been synthesized by the reaction of 4′, 5′-bis(bromomethyl)-benzo-15-crown-5 (2) with 4-hydroxybenzaldehyde, phenol, 4-chlorophenol, 4-methoxyphenol, 2-hydroxybenzaldehyde, and 4-acetamidophenol in 43 ~ 82% yields, respectively. The complex stability constants (K S) and thermodynamic parameters for the stoichiometric 1:1 and/or 1:2 complexes of benzo-15-crown-5 1 and double-armed crown ethers 3–8 with alkali cations (Na+, K+, Rb+) have been determined in methanol–water (V/V=8:2) at 25 °C by means of microcalorimetric titrations. As compared with the parent benzo-15-crown-5 1, double-armed crown ethers 3–8 show unremarkable changes in the complex stability constants upon complexation with Na+, but present significantly enhanced binding ability toward cations larger than the crown cavity by the secondly sandwich complexation. Thermodynamically, the sandwich complexations of crown ethers 3-8 with cations are mostly enthalpy-driven processes accompanied with a moderate entropy loss. The binding ability and selectivity of cations by the double-armed crown ethers are discussed from the viewpoints of the electron density, additional binding site, softness, spatial arrangement, and especially the cooperative binding of two crown ether molecules toward one metal ion.  相似文献   

12.
Tuncer H  Erk C 《Talanta》2005,65(3):819-823
The steady-state fluorescence spectra of cation complexes of fluorophore macrocyclic ethers have been studied for the estimation of 1:1 association constants, and perchlorate salts of Li+, Na+, K+ Rb+ and Pb2+ complexing with dibenzo[23]crown-9, dibenzo[26]crown-10, and sym-dibenzo[26]crown-10, were investigated. The fluorescence emission maximum of the free and the various ligand/cation mixtures of complexed crown ethers were measured at room temperature in AN. The concentrations of chromophore crown ether were obtained from nonlinear calibration plots. The 1:1 stoichiometry of association constants (Kass) were calculated using the equation, 1/Kass [Lo] = (1 − nP)n(1 − m)m/P with linear best fit of plots depending on 1/[Lo] where P = PC/[1 + (m − 1)PC] and PC is the mole fraction of n/m ratio of the complexed ligand. The association constants of cations, Kass, displayed the cation selectivities depending on the cation radii and the macrocyclic ether size, and Pb+ was found to give the strongest association with such crown ethers.  相似文献   

13.
The stability constants and the partial molal volume and isentropic partial molal compressibility changes of complex formation between cations and crown ethers in water at 25°C are presented. The cations involved are Na+, K+, Rb+, Cs+, Ca2+, and Ba2+, and the crown ethers are 12-crown-4, 15-crown-5, and 18-crown-6. Values of V of complex formation have been discussed in terms of two simple models, one based on the scaled particle theory, and the others on the Drude-Nernst continuum model. The results indicate that the charge of the potassium cation in 18-crown-6 is especially well screened from the water. On this basis hydration numbers of complexed cations have been calculated. This shows that the size of the cation compared to the crown ether hole is important for the contacts between complexed cations and water.  相似文献   

14.
Bis-crown ethers in which the benzo-15-crown-5 units were linked to 1,1′-positions of metallocene (M = Fe or Ru) with amide, ester, or ? C? C? bonds were synthesized. Complexing ability of the compounds with alkali, alkali earth, and transition metal cations were measured by the solvent extraction method. The results showed that these crown ethers had high affinity toward alkali metal cations (Li+, Na+, K+, and Rb+) and heavy-metal cations (Ag+ and Tl+). The difference of complexing ability for metal cations between ferrocene and ruthenocene derivatives could not be detected significantly. The extractability of metallocene-bis-crown ethers for metal cations was more larger than that of the corresponding mono-crown ethers, and irregular increments of extractability were explained by assuming the existence of a mixture of 1:1 and 2:1 complexes.  相似文献   

15.
The complexation reactions between 4′,4″(5″)-di-tert-butyldibenzo-18-crown-6 (DTBDB18C6) and Li+, Na+ and K+ ions were studied conductometrically in different acetonitrile–nitromethane mixtures at various temperatures. The formation constants of the resulting 1:1 complexes were calculated from the computer fitting of the molar conductance-mole ratio data at different temperatures. At 20 °C and in nitromethane solvent, the stability of the resulting complexes varied in the order K+ > Na+ > Li+. The enthalpy and entropy changes of the complexation reactions were evaluated from the temperature dependence of formation constants. It was found that the stability of the resulting complexes increased with increasing nitromethane in the solvent mixture. The TΔS° versus ΔH° plot of thermodynamic data obtained shows a fairly good linear correlation indicating the existence of enthalpy–entropy compensation in the complexation reactions. The ab initio studies calculated at B3LYP/6-31G level of theory, indicate the binding energy of complexes decreases with increasing cation size in the gas phase. In the solution phase, DTBDB18C6 preferentially forms complexes with the larger ions rather than the smaller ions because the solvation energies of the smaller ions are large enough to overcome and reverse the trends in gas phase complexation. The findings of this study suggest that the current understanding of the factors influencing the selectivity of metal ion complexation by crown ethers may be in need of revision.  相似文献   

16.
From extraction experiments and γ-activity measurements, the exchange extraction constants corresponding to the general equilibrium M+(aq)+NaL+(nb)⇔ML+(nb)+Na+(aq) taking place in the two-phase water-nitrobenzene system [M+=Li+, K+, Rb+, Cs+; L = p-tert-butylcalix[4]arene-tetrakis (N, N-dimethylthioacetamide); aq = aqueous phase, nb = nitrobenzene phase] were evaluated. Furthermore, the stability constants of the ML+ complexes in water saturated nitrobenzene were calculated; they were found to increase in the cation order Cs+<Rb+<K+<Li+<Na+.  相似文献   

17.
The novel unique structures of bis-crown ethers were successfully synthesized from tri (propylene glycol) di-acrylate with amino- and aza-crown ethers through Michael addition. The crown ethers contained the primary and the secondary amine group such as 2-aminomethyl crown ethers, 4-aminobenzo crown ethers and 1-aza crown ethers. The newly synthesized bis-crown ethers were characterized by elemental analyses, IR, 1H NMR, 13C NMR, mass spectrum, respectively. The newly synthesized host compounds of bis-crown ethers showed complex ability with various sizes of alkali metal cations such as Na+, K+, Rb+ and Cs+. The complexation behavior was examined by 1H NMR spectroscopy and UV spectrometry.  相似文献   

18.
Summary Retention of crown ethers in reverse-phase HPLC has been determined by their bonding ability with cations present in the eluent. The dependence of retention of crown ethers on cation concentration exhibits an inflection and makes it possible to calculate stability constant for the crown ether-cation complex. It is shown that in 75% MeOH retention of antitumor antibiotic, actinomycin D, depends on [Na+] and not on [K+] at concentrations of K+ from 5×10–7 to 10–1 mol l–1. Hence, actinomycin D may be classified as an ionophore-antibiotic.  相似文献   

19.
From extraction experiments and γ-activity measurements, the exchange extraction constants corresponding to the general equilibrium M+(aq)+CsL+(nb)⇔ML+(nb)+Cs+(aq) taking place in the two-phase water-nitrobenzene system (M+ = Li+, Na+, K+, Rb+; L = hexaethyl p-tert-butylcalix[6]arene hexaacetate; aq = aqueous phase, nb = nitrobenzene phase) were determined. Moreover, the stability constants of the ML+ complexes in water saturated nitrobenzene were calculated; they were found to increase in the cation order Rb+<Cs+<K+<Na+<Li+.  相似文献   

20.
The kinetics of the redox reaction between mandelic acid (MA) and ceric sulfate have been studied in aqueous sulfuric acid solutions and in H2SO4? MClO4 (M+ = H+, Li+, Na+) and H2SO4? MHSO4 (M+ = Li+, Na+, K+) mixtures under various experimental conditions of total electrolyte concentration (that is, ionic strength) and temperature. The oxidation reaction has been found to occur via two paths according to the following rate law: rate = k[MA] [Ce(IV)], where k = k1 + k2/(1 + a)2[HSO4?]2 = k1 + k2/(1 + 1/a)2[SO42?]2, a being a constant. The cations considered exhibit negative specific effects upon the overall oxidation rate following the order H+ ? Li+ < Na+ < K+. The observed negative cation effects on the rate constant k1 are in the order Na+ < Li+ < H+, whereas the order is in reverse for k2, namely, H+ ? Li+ < Na+. Lithium and hydrogen ions exhibit similar medium effects only when relatively small amounts of electrolytes are replaced. The type of the cation used does not affect significantly the activation parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号