首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 806 毫秒
1.
The Crystal Structure of the 1:1 Addition Compound between Antimony Trichloride and Diphenylammonium Chloride, SbCl3 · (C6H5)2NH2+Cl? The 1:1 addition compound between antimony trichloride and diphenylammoniumchloride SbCl3 · (C6H5)2NH2+Cl? crystallizes in the monoclinic space group P21/n with a = 5.668(8), b = 20.480(12), c = 14.448(17) Å, β = 110.4(1)° and Z = 4 formula units. Chains of SbCl3 molecules and anion cation chains are bridged by Cl ions and form square tubes. The coordination of the Sb atoms by Cl atoms by Cl atoms and Cl ions is distorted octahedral. Mean distances are Sb? Cl = 2.37 Å for Sb? Cl (3×), 3.09 Å for Sb…Cl? (2×) and 3.42 Å for Sb…Cl (1×). The Sb…Cl? contacts and hydrogen bonds NH…Cl? at 3.15 Å generate tetrahedral coordination of the Cl ions.  相似文献   

2.
Triorganoantimony and Triorganobismuth Derivatives of 2-Pyridinecarboxylic Acid and 2-Pyridylacetic Acid. Crystal and Molecular Structures of (C6H5)3Sb(O2C-2-C5H4N)2 and (CH3)3Sb(O2CCH2-2-C5H4N)2 Triorganoantimony and triorganobismuth dicarboxylates R3M(O2C-2-C5H4N)2 (M = Sb, R = CH3, C6H5, 4-CH3OC6H4; M = Bi, R = C6H5, 4-CH3C6H4) and (CH3)3Sb(O2CCH2-2-C5H4N)2 have been prepared from (CH3)3Sb(OH)2, R3SbO (R = C6H5, 4-CH3OC6H4), or R3BiCO3 (R = C6H5, 4-CH3C6H4) and the appropriate heterocyclic carboxylic acid. Vibrational spectroscopic data indicate a trigonal bipyramidal environment of M the O(? C)-atoms of the carboxylate ligands being in the apical and three C atoms (of R) in the equatorial positions; in addition coordinative interaction occurs in the 2-pyridinecarboxylates between M and O(?C) of one and N of the other carboxylate ligand and in (CH3)3)Sb(O2CCH2-2-C5H4N)2 between Sb and O(?C) of both carboxylate ligands. (C6H5)3Sb(O2C-2-C5H4N)2/(CH3)3Sb(O2CCH2-2-C5H4N)2 crystallize monoclinic [space group P21/c/P21/n; a = 892.6(9)/1043.4(6), b = 1326.9(6)/3166.2(18), c = 2233.1(9)/1147.5(7) pm, β = 99.74(8)°/97.67(5)° Z = 4/8; d(calc.) = 1.522/1.553 × Mg m?3; Vcell = 2606.7 × 106/3757.0 × 106pm3, structure determination from 3798/4965 independent reflexions (F ≥ 4.0 σ(F))/(I ≥ 1.96 σ(I), R(unweighted) = 0.024/0.036]. Sb is bonding to three C6H5/CH3 groups in the equatorial plane [mean distances Sb? C: 212.2(3)/208.7(6) pm] and two carboxylate ligands via O in the apical positions [Sb? O distances: 218.5(2), 209.9(2)/212.1(3), 213.2(3) pm]. In (C6H5)3Sb(O2C-2-C5H4N)2 there is a short Sb? O(?C) and a short Sb? N contact [Sb? O: 272.1(2), Sb? N: 260.2(2) pm] and distoritions of the equatorial angles [C? Sb? C: 99.2(1)°, 158.2(1)°, 102.0(1).] and of the axial angle [O? Sb? O: 169.9(1)°], and in (CH3)3Sb(O2CCH2-2-C5H4N)2, which contains two different molecules in the asym-metric unit, there are two Sb? O(?C) contacts [Sb? O, mean: 302.2(4), and 310.7(4)pm, respectively] and distortions of the equatorial angles [C? Sb? C: 114.5(2)°, 132.4(3)° 113.1(2)°, and 123.9(3)° 115.5(2)°, 120.6(3)°, respectively] and of the axial angles [O? Sb? O: 174,9(1)°, 177.9(1)°, respectively].  相似文献   

3.
The Crystal Structure of the 2:1 Addition Compound between Antimony Trichloride and Diphenylamine, 2SbCl3 · (C6H5)2NH The 2:1 molecular compound between antimony trichloride and diphenylamine, 2SbCl3 · (C6H5)2NH, crystallizes in the monoclinic space group P21/c with a = 7.802(2) Å, b = 9.415(3) Å, c = 26.037(8) Å, β = 91.08(2)0 and Z = 4. The two independent SbCl3 molecules point with the Sb atom to a phenyl ring each of the diphenylamine molecule. Inspite of slightly different orientations the distances to the ring planes are about equal (3.08 and 3.09 Å). The conformation of the diphenylamine molecule is an intermediate between the planar and the twist form. The mean bond distance Sb? Cl is 2.37 Å. Longer Sb…Cl contacts of 3.35 to 3.50 Å and π-donor-acceptor interactions complete the distorted octahedral coordination respectively, of the and ψ-octahedral coordination, respectively, of the Sb-atoms.  相似文献   

4.
The Crystal Structure of the 2:1 Addition Compound between Antimony Trichloride and Diphenyl, 2SbCl3 · (C6H5)2 The 2:1 adduct of antimony trichloride with diphenyl, 2SbCl3 · (C6H5)2, crystallizes in the triclinic space group P1 with a = 13.498(5) Å, b = 7.884(2) Å, c = 9.341(3) Å, α = 86.40(2)°, β = 110.05(3)0, γ = 91.41(2)° and Z = 2. Each SbCl3 molecule points to a phenyl ring of the diphenyl molecule. The distances from the two independent Sb atoms to the phenyl ring planes differ (3.26 and 3.08 Å). The torsion angle between the phenyl ring planes within the diphenyl molecule is 40.5°. The mean Sb? Cl bond distance is 2.39 Å. Longer Sb…Cl contacts of 3.44 to 3.46 Å and the π-donor-acceptor interactions complete the distorted octahedral coordination, and ψ-octahedral coordination respectively, of the Sb atoms.  相似文献   

5.
M(H2O)2(4,4′‐bipy)[C6H4(COO)2]·2H2O (M = Mn2+, Co2+) – Two Isotypic Coordination Polymers with Layered Structure Monoclinic single crystals of Mn(H2O)2(4,4′‐bipy)[C6H4(COO)2]·2H2O ( 1 ) and Co(H2O)2(4,4′‐bipy)[C6H4(COO)2]· 2H2O ( 2 ) have been prepared in aqueous solution at 80 °C. Space group P2/n (no. 13), Z = 2; 1 : a = 769.20(10), b = 1158.80(10), c = 1075.00(10) pm, β = 92.67(2)°, V = 0.9572(2) nm3; 2 : a = 761.18(9), b = 1135.69(9), c = 1080.89(9) pm, β = 92.276(7)°, V = 0.9337(2) nm3. M2+ (M = Mn, Co), which is situated on a twofold crystallographic axis, is coordinated in a moderately distorted octahedral fashion by two water molecules, two oxygen atoms of the phthalate anions and two nitrogen atoms of 4,4′‐biypyridine ( 1 : M–O 219.5(2), 220.1(2) pm, M–N 225.3(2), 227.2(2) pm; 2 : Co–O 212.7(2), 213.7(2) pm, Co–N 213.5(3), 214.9(3) pm). M2+ and [C6H4(COO)2)]2? build up chains, which are linked by 4,4′‐biyridine molecules to yield a two‐dimensional coordination polymer with layers parallel to (001).Thermogravimetric analysis in air of 1 indicated a loss of water of crystallization between 154 and 212 °C and in 2 between 169 and 222 °C.  相似文献   

6.
Triorganoantimony and Triorganobismuth Disulfonates. Crystal and Molecular Structure of (C6H5)3M(O3SC6H5)2(M = Sb, Bi) Triorganoantimony disulfonates R3Sb(O3SR′)2 [R = CH3 = Me, C6H5 = Ph; R′ = Me, CH2CH2OH, Ph, 4-CH3C6H4. R = Ph; R′ = 2,4-(NO2)2C6H3], Me3Sb(O3SCF3)2 · 2 H2O and triphenylbismuth disulfonates Ph3Bi(O3SR′)2 [R = Me, CF3, CH2CH2OH, Ph, 4-CH3C6H4, 2,4-(NO2)2C6H3] have been prepared by reaction of Me3Sb(OH)2, (Ph3SbO)2, and Ph3BiCO3, respectively, with the appropriate sulfonic acids. From vibrational data an ionic structure is inferred for Me3Sb(O3SCF3)2 · 2 H2O and Me3Sb(O3SCH2CH2OH)2, and a covalent structure for the other compounds with a penta-coordinated central atom with trigonal bipyramidal surrounding (Ph or Me in equatorial, unidentate sulfonate ligands in apical positions). Ph3M(O3SPh)2 (M = Sb, Bi) crystallize monoclinic [space group P21/c; M = Sb/Bi: a = 1 611.5(8)/1 557.4(9), b = 987.5(6)/1 072,5(8), c = 1 859.9(9)/1 696.5(9) pm, β = 105.71(5)/96.62(5)°; Z = 4; d(calc.) 1.556/1.781 Mg · m?3; Vcell = 2 849.2 · 106/2 814.8 · 106 pm3; structure determination from 3 438/3 078 independent reflexions (I ≥ 3σ(I)), R(unweighted) = 0.030/0.029]. M is bonding to three Ph groups in the equational plane [mean distances Sb/Bi? C:210.1(4)/219.1(7) pm] and two sulfonate ligands with O in apical positions [distances Sb? O: 210.6(3), 212.8(2); Bi? O: 227.6(5), 228.0(4) pm]. Weak interaction of M with a second O atom of one sulfonate ligand is inferred from a rather short M? O contact distance [Sb? O: 327.4(4), Bi? O: 312.9(5) pm], and from the distortion of equatorial angles [C? Sb? C: 128.4(2), 119.2(2), 112.2(2); C? Bi? C: 135.9(3), 117.8(3), 106.3(3)°]  相似文献   

7.
Nalidixium tetrachloroantimonate monohydrate, (C12H13N2O3)SbCl4 · H2O, has been synthesized and its crystal structure has been determined. The structure is built of the [Sb2Cl8]2? anions, C12H13N2O 3 + nalidixium cations, and H2O molecules joint by hydrogen bonds and π-π-and Cl?Cl interactions. The [Sb2Cl8]2? anion is a dimer of the SbCl5 E distorted octahedra sharing common Cl?Cl edge (E is the lone electron pair). The Sb polyhedra contain two short Sb-Cl bonds (2.387 and 2.395 Å), one bond of a medium length (2.508 Å), and two long bridging bonds (2.745 and 3.054 Å).  相似文献   

8.
The factors influencing the distortion of inorganic anions in the structures of chloridoantimonates(III) with organic cations, in spite of numerous structural studies on those compounds, have not been clearly described and separated. The title compound, [(C2H5)2NH2]3[SbCl6], consisting of isolated distorted [SbCl6]3− octahedra that have C3 symmetry and [(C2H5)2NH2]+ cations, unequivocally shows the role played by hydrogen bonding in the geometry variations of inorganic anions. The organic cations, which are linked to the inorganic substructure through N—H...Cl hydrogen bonds, are clearly responsible for the distortion of the octahedral coordination of SbIII in terms of differences (Δ) in both Sb—Cl bond lengths [Δ = 0.4667 (6) Å] and Cl—Sb—Cl angles [Δ = 9.651 (17)°].  相似文献   

9.
Binuclear Antimony(V) Complexes with Bridging Diphenylphosphato Ligands The binuclear antimony(V) complexes Cl3Sb(O)[(C6H5O)2PO2]2SbCl3 ( 1 ), Cl3Sb(O)[(C6H5O)2PO2](OCH3)SbCl3 ( 2 ), Cl3Sb(O)[(C6H5O)2PO2](OH)SbCl3 ( 3 ) and Cl4Sb[(C6H5O)2PO2]2SbCl4 ( 4 ) are prepared by reaction of diphenylphosphoric acid with antimony(V) chloride, water and methanol in different molar ratios. The progress of the reactions was controlled by the 31P-NMR signals. 1 crystallizes triclinic in the space group P1 with a = 918.8, b = 1312.9, c = 1395.8 pm, α = 91.91, β = 101.36, γ = 95.90° and Z = 2. 2 to 4 crystallize in monoclinic space groups: 2 : C2/c, a = 2753.4, b = 1156.1, c = 1476.7 pm, β = 98.01° and Z = 8; 3 : P21/c, a = 1234.8, b = 1471.8, c = 1263.4 pm, β = 107.15° and Z = 4; 4 : P21/n, a = 1943.8, b = 940.8, c = 2015.6 pm, β = 109.87° and Z = 4 resp. The NMR spectra are discussed and some IR data are communicated.  相似文献   

10.
The Layered Structure of Cu2(H2O)4[C4H4N2][C6H2(COO)4]·2H2O Triclinic single crystals of Cu2(H2O)4[C4H4N2][C6H2(COO)4]·2H2O have been grown in an aqueous silica gel. Space group (Nr. 2), a = 723.94(7) pm, b = 813.38(14) pm, c = 931.0(2) pm, α = 74.24(2)°, β = 79.24(2)°, γ = 65.451(10)°, V = 0.47819(14) nm3, Z = 1. Cu2+ is coordinated in a distorted, octahedral manner by two water molecules, three oxygen atoms of the pyromellitate anions and one nitrogen atom of pyrazine (Cu—O 194.1(2)–229.3(3) pm; Cu–N 202.0(2) pm). The connection of Cu2+ and [C6H2(COO)4)]4? yields infinite strands, which are linked by pyrazine molecules to form a two‐dimensional coordination polymer. Thermogravimetric analysis in air showed that the dehydrated compound was stable between 175 and 248 °C. Further heating yielded CuO.  相似文献   

11.
New Alkylchlorosulfonium Salts and Crystal Structure of Diethylchlorosulfonium-Hexachloroantimonate (C2H5)2SCl+SbCl6? We describe the preparation and spectroscopic characterization of Dialkylchlorosulfonium-Hexachloroantimonates R2SCl+SbCl6? (R = C2H5, i-C3H7) and the crystal structure of Diethylchlorosulfonium-Hexachloroantimonate (C2H5)2SCl+SbCl6? at 172(1) K. The salt crystallize in the orthorhombic space group P212121 with a = 980.4(13) pm, b = 1010.6(8) pm, c = 1492.8(14) pm with four formula units per unit cell.  相似文献   

12.
Inhaltsübersicht. Triorganoantimon- und Triorganobismutdicarboxylate R3M[O2C(CH2)n-2-C4H3X]2 (M = Sb, R = CH3, C6H11, C6H5, 4-CH3OC6H4; M = Bi, R = C6H5, 4-CH3C6H4; n = 0, X = O, S, NH, NCH3. M = Sb, R = CH3, C6H5; M = Bi, R = C6H5; n = 1, X = O, S. M = Sb, R = C6H11, n = 1, X = S; R = 4-FC6H4, n = 0, X = O, S, NCH3; R = 2,4,6-(CH3)3C6H2, n = 0, X = O, S, NH) wurden durch Reaktionen von R3Sb(OH)2 (R = CH3, C6H11, 2,4,6-(CH3)3C6H2), R3SbO (R = C6H5, 4-CH3OC6H4, 4-FC6H4) bzw. R3BiCO3 mit den entsprechenden fünfgliedrigen heterocyclischen Carbonsäuren 2-C4H3X(CH2)nCOOH dargestellt. Auf der Basis schwingungsspektroskopischer Daten wird für alle Verbindungen eine trigonal bipyramidale Umgebung vom M (zwei O-Atome von einzähnigen Carboxylatliganden in den apikalen, drei C-Atome von R in den äquatorialen Positionen) vorgeschlagen, ferner eine schwache Wechselwirkung zwischen O(=C) jeder Carboxylatgruppe und M. Die Kristallstrukturbestimmung von (C6H5)3Sb(O2C–2-C4H3S)3 stützt diesen Vorschlag. Die Verbindung kristallisiert triklin [Raumgruppe P$1; a = 891,8(14), b = 1058,2(12), c = 1435,6(9) pm, α = 68,53(8), β = 85,47(9), γ = 85,99(11)°; Z = 2; d(ber.) = 1,607 Mg m–3; V(Zelle) = 1255,6 Å3; Strukturbestimmung anhand von 3947 unabhängigen Reflexen (Fo > 3σ(F2o)), R(ungewichtet) = 0,037]. Sb bindet drei C6H5-Gruppen in der äquatorialen Ebene [mittlerer Abstand Sb–C: 211,1(5)pm] und zwei einzähnige Carboxylatliganden in den apikalen Positionen einer verzerrten trigonalen Bipyramide [mittlerer Abstand Sb–O: 212,0(4) pm]. Aus den relativ kurzen Sb – O(=C)-Abständen [274,4(4) und 294,9(4) pm] und aus der Aufweitung des dem O(=C)-Atom nächsten äquatorialen C–Sb–C-Winkels auf 145,9(2)° [andere C-Sb-C-Winkel: 104,4(2), 109,5(2)°] wird auf schwache Sb–O(=C)-Koordination geschlossen. Schließlich wird eine Korrelation zwischen dem (+, –)I-Effekt des Organoliganden R an M (M = Sb, Bi) und der Stärke der M–O(=C)-Koordination in den Dicarboxylaten R3M[O2C(CH2)n–2-C4H3X]2 vorgeschlagen. Triorganoanümony and Triorganobismuth Derivatives of Carbonic Acids of Five-membered Heterocycles. Crystal and Molecular Structure of (C6H5)3Sb(O2C–2-C4H3S)2 Triorganoantimony- and triorganobismuth dicarboxylates R3M[O2C(CH2)n–2-C4H3X]2 (M = Sb, R = CH3, C6H11, C6H5, 4-CH3OC6H4; M = Bi, R = C6H5, 4-CH3C6H4; n = 0, X = O, S, NH, NCH3. M = Sb, R = CH3, C6H5; M = Bi, R = C6H5; n = 1, X = O, S. M = Sb, R = C6H11, n = 1, X = S; R = 4-FC6H4, n = 0, X = O, S, NCH3; R = 2,4,6-(CH3)3C6H2, n = 0, X = O, S, NH) have been prepared by reaction of R3Sb(OH)2 (R = CH3, C6H11; 2,4,6-(CH3)3C6H2), R3SbO (R = C6H5, 4-CH3OC6H4, 4-FC6H4) or R3BiCO3 with the appropriate five-membered heterocyclic carboxylic acid. From vibrational data for all compounds a trigonal bipyramidal environment around M (two O atoms of unidendate carboxylate ligands in apical, three C atoms (of R) in equatorial positions) is proposed and also an additional weak interaction of O(=C) of each carboxylate group and M. The crystal structure determination of Ph3Sb(O2C–2-C4H3S)2 gives additional prove to this proposal. It crystallizes triclinic [space group P$1; a = 891.8(14), b = 1058.2(12), c = 1435.6(9) pm, α = 68.53(8), β = 85.47(9), γ = 85.99(11)°; Z = 2; d(calc.) = 1.607 Mg m–3; Vcell = 1255.6 Å3; structure determination from 3 947 independent reflexions (Fo > 3σ(F2o)), R(unweighted) = 0.037]. Sb is bonding to three C6H5 groups in the equatorial plane [mean distance Sb–C: 211.1(5) pm] and two unidentate carboxylate ligands in the apical positions of a distorted trigonal bipyramid [mean distance Sb–O: 212.0(4) pm]. From the relatively short Sb–O(=C) distances [274.4(4) and 294.9(4) pm] and from the enlarged value of the equatorial C–Sb–C angle next to the O(=C) atom [145.9(2)°; other C–Sb–C angles: 104.4(2), 109.5(2)°] additional weak Sb–O(=C) coordination is inferred. Finally a correlation between the (+, –) I-effect of the organic ligands It at M and the strength of the M–O = C interaction is suggested.  相似文献   

13.
Chloroselenates(IV): Synthesis, Structure, and Properties of [As(C6H5)4]2Se2Cl10 and [As(C6H5)4]Se2Cl9 The Se2Cl102? and Se2Cl9? anions were prepared, as the first dinuclear haloselenates(IV), from the reaction of (SeCl4)4 with stoichiometric quantities of chloride ions in POCl3 solutions; they were isolated as yellow crystalline As(C6H5)4+ salts. Complete X-ray structural analyses at ?130°C of [As(C6H5)4]2Se2Cl10 ( 1 ) (space group P1 , a = 10.296(7), b = 11.271(6), c = 12.375(8) Å, = 74.17(5)°, α = 81.38(5)°, β = 67.69(4)°, V = 1276 Å3) and of [As(C6H5)4]Se2Cl9 ( 2 ) (space group P21/n, a = 12.397(5), b = 17.492(6), c = 14.235(4) Å, α 93.25(3)°, V = 3082 Å3) show in both cases two distorted octahedral SeCl6 groups connected through a common edge in 1 and a common face in 2 . The terminal Se? Cl bonds (average 2.317 Å in 1 , 2.223 Å in 2 ) are much shorter than the Se? Cl bridges (av. 2.661 Å in 1 , 2.652 Å in 2 ). The stereochemical activity of the SeIV lone electron pair causes severe distortion of the central Se2Cl2 ring in the centrosymmetric Se2Cl102? ion. The vibrational spectra of the anions are reported.  相似文献   

14.
Preparation of (C6F5)2SF+MF6? (M ? As, Sb) and Crystal Structure of (C6F5)2SF+SbF6? XeF+MF6? (M ? As, Sb) reacts with (C6F5)2S in HF to form (C6F5)2SF+MF6?. The deeply violet sulfonium salts can be kept without decomposition up to 24 h at room temperature. The hexafluoroantimonate salt crystallizes in the monoclinic space group P21/n with a = 1056.4(7) pm, b = 1446.3(10) pm, c = 1102.9(8) pm, β = 91.29(6)° und Z = 4. The SF-bond distance with 158.4(3) pm is of unusual length. Cations and anions are connected via interionic fluorine contacts to an infinite chain, in which cations and anions form to ABAB sequence along the chain.  相似文献   

15.
Heteronuclear Metal Atom Clusters of the Types X4?n[SnM(CO)4P(C6H5)3]n and M2(CO)8[μ-Sn(X)M(CO)4P(C6H5)3]2 by Reaction of SnX2 with M2(CO)8[P(C6H5)3]2 (X = Halogene; M = Mn, Re; n = 2, 3) The compounds of the both types X4?n[SnM(CO)4P(C6H5)3]n (n = 3; M = Mn; X = F, Cl, Br, I. n = 2: M = Mn, Re; X = Cl, Br, I) and M2(CO)8[μ-Sn(X)M(CO)4P(C6H5)3]2 (M = Mn; X = Cl, I. M = Re; X = Cl, Br, I) are prepared by reaction of SnX2 with M2(CO)8[P(C6H5)3]2 (M = Mn, Re). Their IR frequencies are assigned. In Re2(CO)8[μ-Sn(Cl)Re(CO)4P(C6H5)3]2 the central molecule fragment contains a planar Re2Sn2 rhombus with a transannular Re? Re bond of 316.0(2) pm. Each of the SnIV atoms is connected with the terminal ligands Cl and Re(CO)4P(C6H5)3. These ligands are in transposition with respect to the Re2Sn2 ring. The mean values for the remaining bond distances (pm) are: Sn? Re = 274.0(3); Sn? Cl = 243(1), Re? C = 176(5), Re? P = 242.4(9), C? O = 123(5). The factors with an influence on the geometrical shape of such M2Sn2 rings (M = transition metal) are discussed.  相似文献   

16.
[Mn(H2O)4(C4N2H4)][C6H4(COO)2] – An One‐Dimensional Coordination Polymer with Chain‐like [Mn(H2O)4(C4N2H4)]n2n+ Polycations Orthorhombic single crystals of [Mn(H2O)4(C4N2H4)][C6H4(COO)2] have been prepared in aqueous solution at room temperature. Space group Imm2 (no. 44), a = 1039.00(6) pm, b = 954.46(13) pm, c = 737.86(5) pm, V = 0.73172(12) nm3, Z = 2. Mn2+ is coordinated in a octahedral manner by four water molecules and two nitrogen atoms stemming from the pyrazine molecules (Mn–O 215.02(11) pm; Mn–N 228.7(4), 230.7(4) pm). Mn2+ and pyrazine molecules form chain‐like polycations with [Mn(H2O)4(C4N2H4)]n2n+ composition. The positive charge of the polycationic chains is compensated for by phthalate anions, which are accomodated between the chains. The phthalate anions are linked by hydrogen bonds to the polycationic chains. Thermogravimetric analysis in air revealed that the loss of water of crystallisation and pyrazine occurs in two steps between 130 and 245 °C. The resulting sample was stable up to 360 °C. Further decomposition yielded Mn2O3.  相似文献   

17.
Preparation, Crystal and Molecular Structure of 2 (C6H5)3PO · (COOH)2 2(C6H5)3PO · (COOH)2 crystallizes from a solution of oxalic acid and (C6H5)3PO in methanol. Crystal data: space group P21/c (monoclinic) with a = 907.4(2), b = 1035.4(3), c = 1797.9(8) pm, β = 75.20(1)° and Z = 2; d (calc./obs.) = 1.27/1.31 g cm?;3; Vcell = 1633.1 × 106 pm3. The structure was determined by direct methods from 3006 independent reflections and has been refined by full matrix least squares to R = 0.049. In the compound one molecule of trans-oxalic acid and two symmetrically dependent (C6H5)3PO units are linked by short O…?H–O bridges distances and angles see above.  相似文献   

18.
NaZr2N2SCl: A Flux‐Stabilized Derivative of Zirconium(IV) Nitride Sulfide (Zr2N2S) The oxidation of zirconium metal with elemental sulfur and sodium azide (NaN3) should give access to zirconium(IV) nitride sulfide, Zr2N2S, which could crystallize isotypically with the trigonal rare‐earth(III) oxide sulfides M2O2S (M = Y, La–Lu). Appropriate molar admixtures of these reactants together with NaCl added as flux were heated for seven days at 850 °C in torch‐sealed evacuated silica tubes. As main product, however, pale yellow platelets with the composition NaZr2N2SCl (trigonal, R 3 m; a = 363.56(3), c = 2951.2(4) pm; Z = 3) emerged as single crystals. This pseudo‐quaternary compound crystallizes isotypically with e. g. LixEr2HyCl2 (x ≤ 1, y ≤ 2) in a (doubly) stuffed ZrBr‐type structure and contains at least structural domains of the hypothetical Ce2O2S‐analogous Zr2N2S. Zr4+ resides in monocapped trigonal anti‐prismatic sevenfold coordination of the anions (d(Zr–N) = 218 (3 ×) and 220 pm (1 ×), d(Zr–S/Cl) = 266 pm, 3 ×). Closest packed double‐layers of Zr4+ with all tetrahedral interstices occupied with N3– are sandwiched by layers of isoelectronic S2– and Cl anions. These anionic six‐layer slabs (S/Cl–Zr–N–N–Zr–S/Cl) pile up parallel (001) in a cubic closest packed fashion. Charge balance and structural consistence occurs between these layers by intercalation of Na+ within octahedral voids (d(Na–S/Cl) = 282 pm, 6 ×) of double‐layers of the indistinguishable heavy anions (S2– and Cl).  相似文献   

19.
Synthesis and Structure of [(Ph3C6H2)Te]2, [(Ph3C6H2)Te(AuPPh3)2]PF6 and [(Ph3C6H2)TeAuI2]2 [(2,4,6-Ph3C6H2)Te]2 reacts with Ph3PAu+ to yield [2,4,6-Ph3C6H2TeAuPPh32]PF6 which can be oxidized by I2 to form the gold(III) complex [(2,4,6-Ph3C6H2)TeAuI2]2. [(2,4,6-Ph3C6H2)Te]2 crystallizes in the monoclinic space group P21/c with a = 810.6(2); b = 2026.5(5); c = 2260.6(7) pm; β = 99.23(3)° and Z = 4. In the crystal structure the ditelluride exhibits a dihedral angle C11? Te1? Te2? C21 of 66.1(2)°. The distance Te1? Te2 is 269.45(6) pm. In the cation of the triclinic complex [(2,4,6-Ph3C6H2)Te(AuPPh3)2]PF6 (space group P1 ; a = 1197.4(3); b = 1457.2(4); c = 1680.0(6) pm; α = 84.69(3)°; β = 85.11(3)°; γ = 75.54(3)°; Z = 2) a pyramidal skeleton RTeAu2 with distances Te? Au = 259.2(1) and 257.8(2) pm and Au? Au = 295.3(1) pm is present. [(2,4,6-Ph3C6H2)TeAuI2]2 crystallizes in the triclinic space group P1 with a = 1086.3(3); b = 1462.9(6); c = 1654.2(2) pm; α = 85.25(2)°; β = 87.44(1)°; γ = 80.90(3)°; Z = 2. In the centrosymmetrical dinuclear complex [(2,4,6-Ph3C6H2)TeAuI2]2 the Au atoms exhibit a square-planar coordination by two iodine atoms and two tellurolate ligands. The tellurolate ligands form symmetrical bridges with distances Te? Au = 260.0 pm. The distances Au? I are in the range of 260.3(1) and 263.7(1) pm.  相似文献   

20.
Oxidative Addition of N‐chlorotriphenylphosphoraneimine onto Phosphorus(III) Chloride and Antimony(III) Chloride. Crystal Structures of (Cl3PNPPh3)2[PCl6][ClHCl], [SbCl4(HNPPh3)2][SbCl6], and [Sb(NPPh3)4][SbCl6] Phosphorus(III) chloride reacts with N‐chlorotriphenylphosphoraneimine, ClNPPh3, in CH2Cl2 solution strongly exothermically via oxidative addition to give (Cl3PNPPh3)2[PCl6][ClHCl] ( 1 ). As a by‐product, Ph3PNP(O)Cl2 can be obtained, which is formed from PCl3 and ClNPPh3 in the presence of POCl3. In contrast to these results, antimony(III) chloride reacts with ClNPPh3 in CH2Cl2 solution to give a mixture of the phosphoraneimine complex [SbCl4(HNPPh3)2][SbCl6] ( 2 ) and the phosphoraneiminato complex [Sb(NPPh3)4][SbCl6] ( 3 ). The complexes 1 ‐ 3 were characterized by IR spectroscopy and by single crystal X‐ray determinations. 1 : Space group C2/c, Z = 4, lattice dimensions at 193 K: a = 3282.0(2), b = 798.7(1), c = 1926.1(2) pm, β = 107.96(1)°, R1 = 0.0302. 1 contains [Cl3PNPPh3]+ cations with PN bond lengths of 152.5(2) and 160.9(2) pm, and a PNP bond angle of 140.5(1)°. 2 ·CH2Cl2: Space group , Z = 2, lattice dimensions at 193 K: a = 1031.2(1), b = 1448.3(2), c = 1811,4(2) pm, α = 70.96(1)°, β = 87.67(1)°, γ = 75.37(1)°, R1 = 0.0713. 2 ·CH2Cl2 contains cations [SbCl4(HNPPh3)2]+ with octahedrally coordinated Sb atom and the HNPPh3 ligand molecules being in trans‐position. Sb–N bond lengths are 207.6(6) and 209.3(6) pm, PN bond lengths 162.3(7) and 160.8(7), which approximately corresponds with double bonds. 3 ·0.5CH2Cl2: Space group P4/n, Z = 2, lattice dimensions at 193 K: a = b = 1678.8(1), c = 1244.3(1) pm, R1 = 0.0618. 3 ·0.5CH2Cl2 contains [Sb(NPPh3)4]+ cations with tetrahedrally coordinated Sb atom and short Sb–N bond lengths of 193.7(6) pm. The PN distances of the phosphoraneiminato ligands, (NPPh3)? with 156.5(6) pm, correspond with double bonds, the SbNP bond angles are 130.6(3)°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号