首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The electroinitiated polymerization of acrylamide (AA) has been studied in acetonitrile medium using tetrabutylammonium perchlorate (TBAP) as the electrolyte. Split-cell experiments showed that the polymer formation takes place both in the anode and the cathode compartments. The polymer yield depends on several factors such as the magnitude of the current flow, the duration of the electrolysis, the monomer concentration, the electrolyte concentration, the temperature of the solution, presence or absence of air, and finally whether or not the cell content was stirred. The current exponent of the polymerization was 0.28 with a reaction rate constant of 1.06 reaction % per hour. The IR and NMR spectra of the polymers suggest that the anodic polymer is polyacrylamide and the cathodic polymer is poly-β-alanine (? CH2? CH2? CO? NH? ). Based on the experimental results, a radical mechanism for the anodic polymerization and an anionic mechanism for the cathodic polymerization have been proposed.  相似文献   

2.
The kinetics of polymerization of acrylamide and methacrylamide, photoinitiated by azidopentamminecobalt(III) chloride in homogeneous aqueous acid medium was studied systematically. Monochromatic wavelengths 365, 405, and 435 mμ were employed for irradiation. Polymerization proceeded without any induction period, and the reaction was followed by measurements of rate of monomer disappearance (bromometrically), rate of complex disappearance (spectrophotometrically), and the chain lengths of the polymer formed (viscometrically). The dependences of the rate of polymerization on variables like light intensity, light absorption fraction by the complex, wavelength, monomer concentration, hydrogen ion concentration, nature of the acid used (HClO4, HNO3, and H2SO4), etc., were studied. The rate of polymerization of acrylamide depended on the unit power of monomer concentration and on the square root of light absorption fraction kε and light intensity I. The rate of methacrylamide polymerization was proportional to the unit power of monomer concentration and fractional powers of 0.25 and 0.30 of kε and I, respectively. A kinetic reaction scheme is proposed and discussed in the light of the experimental results, and it has been concluded that (1) the primary photochemical act is an electron transfer reaction from the azide ion to Co(III) in the complex, (2) initiation of polymerization is by azide radical, (3) termination is by mutual destruction of polymer radicals.  相似文献   

3.
The reaction of methacryloyl chloride with 5‐aminotetrazole gave the polymerizable methacrylamide derivative 5‐(methacrylamido)tetrazole ( 4 ) in one step. The monomer had an acidic tetrazole group with a pKa value of 4.50 ± 0.01 in water methanol (2:1). Radical polymerization proceeded smoothly in dimethyl formamide or, after the conversion of monomer 4 into sodium salt 4‐Na , even in water. A superabsorbent polymer gel was obtained by the copolymerization of 4‐Na and 0.08 mol % N,N′‐methylenebisacrylamide. Its water absorbency was about 200 g of water/g of polymer, although the extractable sol content of the gel turned out to be high. The consumption of 4‐Na and acrylamide (as a model compound for the crosslinker) during a radical polymerization at 57 °C in D2O was followed by 1H NMR spectroscopy. Fitting the changes in the monomer concentration to the integrated form of the copolymerization equation gave the reactivity ratios r 4‐Na = 1.10 ± 0.05 and racrylamide = 0.45 ± 0.02, which did not differ much from those of an ideal copolymerization. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4333–4343, 2002  相似文献   

4.
The copolymerization of vinylhydroquinone (VHQ) and vinyl monomers, e.g., methyl methacrylate (MMA), 4-vinyl-pyridine (4VP), acrylamide (AA), and vinyl acetate (VAc), by tri-n-butylborane (TBB) was investigated in cyclohexanone at 30°C under nitrogen. VHQ is assumed to copolymerize with MMA, 4VP, and AA by vinyl polymerization. The following monomer reactivity ratios were obtained (VHQ = M2): for MMA/VHQ/TBB, r1 = 0.62, r2 = 0.17; for 4VP/VHQ/TBB, r1 = 0.57, r2 = 0.05; for AA/VHQ/TBB, r1 = 0.35, r2 = 0.08. The Q and e values of VHQ were estimated on the basis of these reactivity ratios as Q = 1.4 and e = ?;1.1, which are similar to those of styrene. This suggests that VHQ behaves like styrene rather than as an inhibitor in the TBB-initiated copolymerization. No homopolymerization was observed either under nitrogen or in the presence of oxygen. The reaction mechanism is discussed.  相似文献   

5.
Chemical polymerization of acrylamide at room temperature was examined by using thioglycolic acid-cerium (IV) sulfate and thioglycolic acid-KMnO4 redox systems in acid aqueous medium. Water soluble polyacrylamides containing thioglycolic acid end groups were synthesized. The effects of the molar ratio of acrylamide to Ce(IV) n AAm /n Ce(IV) , the polymerization time, the temperature, the monomer concentration, the molar ratio of cerium (IV) sulfate to thioglycolic acid and the concentration of sulfuric acid on the yield and molecular weight of polymer were investigated. Lower molar ratios of acrylamide/Ce(IV) at constant monomer concentration resulted in an increase in the yield but a decrease in molecular weight of polymer. The increase of reaction temperature from 20 to 70°C resulted in a decrease in the yield but generally resulted in a constant value for the molecular weight of polymer. With increasing polymerization time, the yield and molecular weight of polymer did not change substantially. Ce(IV) and Mn(VII) ions are reduced to Ce(III) and Mn(II) ions respectively in the polymerization reaction. The existence of Ce(III) ion bound to polymer was investigated by UV-visible spectrophotometry and fluoresce measurements. The amount of Mn(II) incorporated into the polymer was determined using graphite furnace atomic absorption spectrometry. The mechanism of this phenomenon is discussed.  相似文献   

6.
The electroinitiated polymerization of styrene in LiClO4-PC solutions has a living character due to the absence of termination. Marked side reactions were observed, limiting the yields. These reactions are mainly due to monomer oxidation by HClO4 and polymer degradation at the anode. They can be minimized by increasing the monomer concentration. Conversion vs time curves show an induction period, an ascending linear portion and a descending portion. Kinetic treatment limited to the ascending portions shows that the polymerization is first-order with respect to monomer and HClO4 concentrations. Kp values are considerably lower than those found in HClO4C2H4Cl2 and in HClO4CH2Cl2, thus confirming that the influence of the solvent in these processes is not merely electrostatic.  相似文献   

7.
New functional monomer methacryloyl isocyanate containing 4‐chloro‐1‐phenol (CPHMAI) was prepared on reaction of methacryloyl isocyanate (MAI) with 4‐chloro‐1‐phenol (CPH) at low temperature and was characterized with IR, 1H, and 13C‐NMR spectra. Radical polymerization of CPHMAI was studied in terms of the rate of polymerization, solvent effect, copolymerization, and thermal properties. The rate of polymerization of CPHMAI has been found to be smaller than that of styrene under the same conditions. Polar solvents such as dimethylsulfoxide (DMSO) and N,N‐dimethyl formamide (DMF) were found to slow the polymerization. Copolymerization of CPHMAI (M1) with styrene (M2) in tetrahydrofuran (THF) was studied at 60°C. The monomer reactivity ratio was calculated to be r1 = 0.49 and r2 = 0.66 according to the method of Fineman—Ross. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 469–473, 2000  相似文献   

8.
Radical polymerization of acrylic propionic anhydride (APA) as a mono-ene counterpart of acrylic anhydride (AA) was investigated in order to obtain supporting evidence for a previously proposed mechanism based on polymerization equilibrium for the cyclopolymerization of AA. The deviation from first-order dependence of the rate of polymerization Rp on monomer concentration was enhanced by a decrease in monomer concentration. The Arrhenius plot of lnRp vs. 1/T was clearly curved in a highly dilute system. These results suggest increased significance of the depropagation reaction equilibrated with propagation under polymerization conditions favorable to five-membered ring formation in cyclopolymerization of AA. Under these conditions, the disproportionation reaction of APA became important and the liberated AA was incorporated into the polymer chain through copolymerization with APA, resulting in poly(APA-co-AA) having five-membered anhydride units.  相似文献   

9.
The polymerization of acrylamide (AAM)in H_2O/DMF or in H_2O/CH_3CN mixed solvent initiated with ceric ion (Ce~(4+) )/N-(substituted phenyl)-acetamide systems have been studied. The redox polymerization was revealed by the low value of overall activation energy (E_α) of AAM polymerization using ceric ion/N-(substituted phenyl) acetamide system as an initiator. The end group of polymer formed was detected by IR spectrum analysis method, it revealed the presence of N-(m-acetoxy-methylphenyl) acetamide (m-AAe) moiety end group in the polymer obtained with ceric ion/m-AAe initiation system.  相似文献   

10.
Second-order non-linear optical polymers having photocrosslinkable moieties were synthesized by cationic polymerization of monomer (I) and monomer (II). The polymerization proceeded rapidly to give linear polymers in high yields. Monomer reactivity ratios were calculated to be r1 = 0.90 and r2 = 0.96 (r1r2 = 0.86), indicating that these monomers copolymerized through the almost ideal copolymerization mechanism. The photocrosslinking reaction of an equimolar copolymer film underwent the conversion of up to ca. 70% upon irradiation with a 500 W high-presure mercury lamp for 5 min. The electric field induced polar orientation of the chromophores (pendant 4-nitrophenyloxy groups) in a photocrosslinked polymer was stable for more than 10 days. This polymer exhibits a nonlinear coefficient d33 of 5.6 × 10-10 esu measured at a pumping wavelength of 1064 nm.  相似文献   

11.
The kinetics of polymerization of acrylamide (AM) initiated by manganese(III) acetate–ethoxyacetic acid (EAA) redox system in aqueous sulphuric acid was investigated in the temperature range 35–45°C. The effects of variations in [monomer], [Mn3+], [EAA], [H+], and ionic strength on the rates of monomer disappearance (Rp) and Mn3+ disappearance (?Rm) were studied. The polymerization process is initiated by the free radical arising from the oxidation of ethoxyacetic acid by Mn3+ and terminated by the mutual combination of growing polymer radicals. Based on the kinetic results, a suitable reaction scheme is proposed and the rate expressions are derived. The study on degree of polymerization supports the proposed scheme for polymerization. The various rate and thermodynamic parameters are evaluated.  相似文献   

12.
The 1D chain red luminescent europium coordination polymer: {[Eu2L6(DMF)(H2O)] · 2DMF · H2O}n ( I ) (L = 4‐chloro‐cinnamic acid anion, C9H6ClO2, DMF = N, N‐dimethylformamide) was synthesized by the reaction of Eu(OH)3 and 4‐chloro‐cinnamic acid ligand. The structure of the coordination polymer was determined by single‐crystal X‐ray diffraction analysis. It reveals that there exists two crystallographically nonequivalent europium atoms in each unit of this coordination polymer and Eu3+ ions are connected by two alternating bridging modes to form an endless polymer structure. The luminescent properties and energy transfer process in the complex are investigated at room temperature.  相似文献   

13.
N-acryloyl-N′-benzoylurea ( 1 ) was prepared and its radical homopolymerization and copolymerization with styrene were carried out. 1 was synthesized yield by the reaction of benzoylisocyanate and acrylamide in tetrahydrofuran in 78%. Radical polymerization of 1 was carried out at 60 or 80°C in DMF (0.1-2.5M) for 5 h in a sealed tube using AIBN (3 mol %) or BPO (3 mol %) as initiators to obtain poly(N′-acryloyl-N′-benzoylurea) ( 2 ) as a methanol-insoluble part in good yield (75–82%) independent of concentration. Number-average molecular weights of 2 were 2700–91,900. Furthermore, copolymerization of 1 with styrene was carried out in various feed ratios to confirm the alternating character in the copolymerization (r1r2 = 0.21) and Q, e values of 1 were evaluated as 0.52, 1.16, respectively. © 1995 John Wiley & Sons, Inc.  相似文献   

14.
Summary Oxidation of the aminoalcohols (AA) such as ethanolamine, diethanolamine and triethanolamine by quinolinium dichromate (QDC) yielded formaldehyde as the main product in aqueous H2SO4 and HClO4 media. The reaction kinetics exhibited a first-order dependence on [QDC]. Plots of 1/k versus 1/[AA] indicated the formation of a QDC-A A adduct prior to the rate limiting step. The equilibrium constants, K, for the formation of QDC-AA adducts were evaluated by kinetic and spectroscopic (Ardon's) methods. The reaction was found to be catalysed by HClO4 and H2SO4. The results were analysed in terms of various acidity function theories.  相似文献   

15.
The free‐radical homopolymerization and copolymerization behavior of N‐(2‐methylene‐3‐butenoyl)piperidine was investigated. When the monomer was heated in bulk at 60 °C for 25 h without an initiator, about 30% of the monomer was consumed by the thermal polymerization and the Diels–Alder reaction. No such side reaction was observed when the polymerization was carried out in a benzene solution with 1 mol % 2,2′‐azobisisobutylonitrile (AIBN) as an initiator. The polymerization rate equation was found to be Rp ∝ [AIBN]0.507[M]1.04, and the overall activation energy of polymerization was calculated to be 89.5 kJ/mol. The microstructure of the resulting polymer was exclusively a 1,4‐structure that included both 1,4‐E and 1,4‐Z configurations. The copolymerizations of this monomer with styrene and/or chloroprene as comonomers were carried out in benzene solutions at 60 °C with AIBN as an initiator. In the copolymerization with styrene, the monomer reactivity ratios were r1 = 6.10 and r2 = 0.03, and the Q and e values were calculated to be 10.8 and 0.45, respectively. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1545–1552, 2003  相似文献   

16.
Summary: Radiation‐induced polymerization of methyl methacrylate (MMA) in ethanol (EtOH) and N,N‐dimethylformamide (DMF) in the presence of ionic liquid [Me3NC2H4OH]+[ZnCl3] is reported. A substantial increase in monomer conversion and molecular weight is observed at room‐temperature ionic liquid (RTIL) >60 vol.‐%, and the resulting PMMA has a broad multimodal MWD. A clear difference in the MWD pattern is noted between EtOH/RTIL and DMF/RTIL systems, probably due to the complicated interactions between the solvent and ionic liquid.

Gel permeation chromatography traces of poly(methyl methacrylate) obtained by radiation polymerization in EtOH/RTIL and DMF/RTIL mixed solvent. Organic/RTIL (v/v): 1) 100:0; 2) 80:20; 3) 60:40; 4); 40:60; 5) 0:100.  相似文献   


17.
Base-catalyzed hydrogen-transfer polymerization and copolymerization of acrylamide and its methyl-substituted derivatives were studied in pyridine at 110°C. n-Butyllithium was used as an initiator. The observed rates of these homopolymerizations were found to decrease in the following order: acrylamide > crotonamide > methacrylamide > N-methylacrylamide > N-methylcrotonamide > tiglinamide > N-methylmethacrylamide ? α-chlorocrotonamide ? α-cyanocrotonamide = 0. Acrylamide gave the polymer with the highest degree of polymerization among the monomers examined. It was found that the number and the position of the methyl substituent in acrylamide affected significantly both the rate of polymerization and the molecular weight of the polymer. Although all polymers obtained, except the N-methyl derivatives, contained both methanol-soluble and methanol-insoluble fractions, a polyamide structure with unsaturated terminal monomer unit was confirmed by both infrared and NMR determinations. From the NMR determination of the saturated and terminal unsaturated units, the degree of polymerization of the resulting polyamides were also obtained. The monomers were also found to copolymerize by a hydrogen-transfer mechanism. However, the main chain of the resulting copolymers was composed of the more reactive monomer unit, and the less reactive monomer was incorporated only as a terminal unit when a less reactive monomer was copolymerized with a more reactive one. From these results, it was concluded that these polymerizations proceeded via an intermolecular hydrogen-transfer mechanism (i.e., stepwise mechanism).  相似文献   

18.
Multisticker associative polyelectrolytes of acrylamide (≈86 mol %) and sodium 2‐acrylamido‐2‐methylpropanesulfonate (≈12 mol %), hydrophobically modified with N,N‐dihexylacrylamide groups (≈2 mol %), were prepared with a micellar radical polymerization technique. This process led to multiblock polymers in which the length of the hydrophobic blocks could be controlled through variations in the surfactant‐to‐hydrophobe molar ratio, that is, the number of hydrophobes per micelle (NH). The rheological behavior of aqueous solutions of polymers with the same molecular weight and the same composition but with two different hydrophobic block lengths (NH = 7 or 3 monomer units per block) was investigated as a function of the polymer concentration with steady‐flow, creep, and oscillatory experiments. The critical concentration at the onset of the viscosity enhancement decreased as the length of the hydrophobic segments in the polymers increased. Also, an increase in the NH value significantly enhanced the thickening ability of the polymers and affected the structure of the transient network. In the semidilute unentangled regime, the behavior of the polymer with long hydrophobic segments (NH = 7) was studied in detail. The results were well explained by the sticky Rouse theory of associative polymer dynamics. Finally, the viscosity decreased with an increase in the temperature, mainly because of a lowering of the sample relaxation time. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1640–1655, 2004  相似文献   

19.
The reaction course of 1-(N-phenyl-carbamyl)aziridine with NaI was found to be highly sensitive to the nature of solvent used; e.g., acetone preferentially gives 1-phenyl-2-imidazolidinone, whereas dimethylformamide (DMF) gives 2-anilino-2-oxazoline. Nuclear magnetic resonance (NMR) study of the solvent effect revealed the relation between the site in the aziridine compound, with which the solvents interact, and the reaction products. From the results obtained by these ring-transformation studies, the use of diethyl sulfate, which is expected to solvate simultaneously at the carbonyl oxygen and the carbamyl–nitrogen atoms, resulted in polymerization of the monomer selectively to the oligomer of type—[CH2CH2N(CONHPh)]n—. The diethyl sulfate was shown to play dual roles as a solvating reagent and an initiator. The oligomer obtained includes relatively definite amount (one molecule per ca. four monomer units) of diethyl sulfate in the “washed” state. The absorbed diethyl sulfate can be removed by treating with aqueous NaOH solution or Amberlite-400 column elution without altering the chemical constitution of the backbone in the polymer. Application of the polymerization procedure to several N-alkyl substituted monomers resulted in oligomers of a similar type. The difference in the monomer reactivity depending on the nature of the substituent groups can be due mainly to steric factors.  相似文献   

20.
The kinetics of polymerization of the vinyl monomers, acrylamide and methacrylamide, photosensitized by uranyl ions in homogeneous aqueous acid medium was studied systematically. Monochromatic radiation of wavelengths 365, 405, and 436 mμ was used for irradiation. Uranyl perchlorate in aqueous perchloric acid (pH = 0–2) was used as the sensitizer to ensure that only uncomplexed UO22+ ions existed in the solution. Polymerization was found to proceed without any induction period, the steady state being attained in about 10–20 min., and was followed by the measurement of the rate of monomer disappearance by bromine addition method. The chain lengths of the polymers were determined by viscometry. It was observed that there was no change in the initiator concentration, [UO22+], during polymerization. The dependence of the rate of polymerization on variables like light intensity, light absorption fraction by the active species, wavelength, monomer concentration, hydrogen ion concentration, temperature, nature of the acid used (HClO4 and H2SO4), viscosity of the medium etc., were studied. A kinetic reaction scheme is proposed and discussed in the light of the experimental results. Certain rate parameters were calculated. The mechanism of photosensitization by uranyl ions with specific reference to primary photochemical act, initiation of polymerization etc., are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号