首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 114 毫秒
1.
In order to elucidate the effect of the hydroxyl group on the polymerization of diallyl hydroxydicarboxylates, we investigated in detail the radical polymerizations of diallyl succinate (DASu), diallyl malate (DAMa), and diallyl tartrate (DATa), each of which have similar structure differing only in the number of hydroxyl groups present. The rate of polymerization (Rp) was quite enhanced in the order DASu < DAMa < DATa, in accord with the increase in the number of hydroxyl groups within a monomer unit. The enhanced ability of the allylic monomer radical to reinitiate chain growth was also in the same order, as was clear from the dependence of Rp on the initiator concentration. The dependence of the residual unsaturation of the polymer on the monomer concentration in the polymerizations of DAMa and DATa was abnormal in terms of cyclopolymerization. These results are discussed in connection with the formation of the intermolecular hydrogen bond through the hydroxyl groups.  相似文献   

2.
Diallyl phthalate (DAP) was copolymerized with dialkyl fumarates, including diethyl fumarate (DEF), di-n-butyl fumarate (DBF), and di-n-octyl fumarate (DOF) by using 2,2′-azobisisobutyronitrile as an initiator at 60°C. Both rate and degree of copolymerization were quite enhanced compared with the homopolymerization of DAP and the maximum rate was found at the molar ratio of 1:1 in the monomer feed. The cyclization of DAP was almost exclusively suppressed in the Copolymerization. Gelation was promoted from 25% of the gel-point conversion for the DAP homopolymerization to 9% of the minimum one observed. Copolymerizability of DAP (M1) with dialkyl fumarates (M2) was quite high, with the following monomer reactivity ratios M2, r1, r2: DEF, 0.01, 1.25; DBF, 0.02, 1.01; DOF, 0.02, 0.96. These results are discussed in mechanistic detail.  相似文献   

3.
Radical polymerization studies on diallyl oxalate (DAO), diallyl malonate (DAM), diallyl succinate (DASu), diallyl adipate (DAA), and diallyl sebacate (DAS) have been conducted kinetically from the standpoint of cyclopolymerization. Benzoyl peroxide was employed as the initiator. The initial overall rate of polymerization, Rp was not proportional to the square root or the first power of the initiator concentration, [I]. But Rp/[I]1/2 and [I]1/2 bore a linear relationship, provided the monomer concentration was kept constant. The residual unsaturation of the polymers decreased with decreasing monomer concentration. The ratio of the rate constant of the unimolecular cyclization reaction to that of the bimolecular propagation reaction of the uncyclized radical, Kc, was evaluated from the above relationship between the residual unsaturation and the monomer concentration at 60°C. The Kc values obtained were 3.6, 3.2, 2.8, 2.5, and 1.2 mole/l. for DAO, DAM, DASu, DAA, and DAS, respectively. The overall activation energies of polymerization were found to be 21.1 (DAO), 24.2 (DAM), 21.7 (DASu), 22.0 (DAA), and 22.2 (DAS) kcal/mole.  相似文献   

4.
The bulk copolymerizations of monoallyl phthalate (MAP) with allyl benzoate (ABz) and diallyl phthalate (DAP) were conducted in the presence of benzoyl peroxide as an initiator at 70°C; copolymers containing allyl alcohol unit were obtained. The copolymer composition was reasonably interpreted in terms of polymerization kinetics, including the partial elimination of phthalic anhydride (PhA) from the MAP growing chain end in its propagation reaction with another monomer. Kinetics of the copolymerization of DAP with MAP were also discussed in detail, and the gel point was additionally evaluated. DAP–MAP copolymer was homogeneously reacted with zinc acetate to produce the polymer gel carrying ionic crosslinkages.  相似文献   

5.
Ethylene glycol bis(methyl fumarate) (EGBMF) was prepared as a new type of divinyl compound and reactive oligomer: a needle crystal, m.p. 104.5°C. Homopolymerization of EGBMF was carried out in dioxane with 0.1 mol/L AIBN at [M] = 1 mol/L and 60°C; the rate of polymerization was estimated to be 4.44 × 10?6 mol/L s in a good agreement with diethyl fumarate (DEF). The cyclization constant Kc was obtained as 1.64 mol/L, being rather low compared with diallyl oxalate which is 1,9-diene having two ester groups analogous to EGBMF. Gelatin occurred at about 35% conversion. Finally, the copolymerization of EGBMF (M1) with diallyl phthalate (DAP) (M2) is tentatively explored with the intention of the improvement of allyl resins in mechanical properties; remarkable rate enhancement was observed for copolymerization. The monomer reactivity ratios were estimated to be r1 = 0.96 and r2 = 0.025, the r1 value being reduced compared with the DEF-DAP copolymerization system. These results are discussed from the standpoint of steric effect on the polymerization of fumarate as an internal olefin.  相似文献   

6.
In the cyclocopolymerizations of diallyl phthalate (DAP) with monovinyl monomers the reactivity ratio of the cyclized radical, rc, was smaller than that of the uncyclized radical, r1; this was ascribed to steric hindrance in the addition reaction of the cyclized radical with DAP. In this paper, the validity of the values of rc and r1 is discussed on the basis of model experiments, i.e., the copolymerization of DAP in dilute solution corresponding to rc and that of allyl propyl phthalate, to r1. The copolymerizations of methyl allyl phthalate and allyl octyl phthalate with vinyl acetate are also presented.  相似文献   

7.
Abstract

The monomer reactivity ratios for vinyl acetate (VAc)-allilidene diacetate (ADA) copolymerization have never been obtained. The composition of VAc-ADA copolymers was determined by NMR spectroscopy, measuring CH protons corresponding to ADA at 3.1τ and VAc at 5.1τ. The monomer reactivity ratios were evaluated; r1 = 1.34 ± 0.05 and r2 = 0.48 ± 0.03, where M1 = ADA and M2 = VAc. From these values the Q and e values for ADA were calculated: Q = 0.047 and e = 0.44 by taking Q = 0.026 and e = ?0.22 for VAc. The H value [1] for copolymerization of ADA, VAc, and vinyl chloride (VC) is 0.87.  相似文献   

8.
Free‐radical copolymerizations of vinyl acetate (VAc = M1) and other vinyl esters (= M2) including vinyl pivalate (VPi), vinyl 2,2‐bis(trifluoromethyl)propionate (VF6Pi), and vinyl benzoate (VBz) with fluoroalcohols and tetrahydrofuran (THF) as the solvents were investigated. The fluoroalcohols affected not only the stereochemistry but also the polymerization rate. The polymerization rate was higher in the fluoroalcohols than in THF. The accelerating effect of the fluoroalcohols on the polymerization was probably due to the interaction of the solvents with the ester side groups of the monomers and growing radical species. The difference in the monomer reactivity ratios (r1, r2) in THF and 2,2,2‐trifluoroethanol was relatively small for all reaction conditions and for the monomers tested in this work, whereas r1 increased in the VAc‐VF6Pi copolymerization and r2 decreased in the VAc‐VPi copolymerization when perfluoro‐tert‐butyl alcohol was used as the solvent. These results were ascribed to steric and monomer‐activating effects due to the hydrogen bonding between the monomers and solvents. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 220–228, 2000  相似文献   

9.
The polymerization of polar monomers such as methyl methacrylate (MMA), methyl acrylate (MA), methacrylonitrile (MAN), and acrylonitrile (AN) was carried out with gadolinium-based Ziegler–Natta catalysts [Gd(OCOCCl3)3-(i-Bu)3Al-Et2AlCl] in hexane at 50°C under N2 to elucidate the effect of the monomer's HOMO(highest occupied moleculor orbital) and LUMO (lowest unoccupied molecular orbital) levels on the polymerizability. In the case of homopolymerization, all monomers were found to polymerize and the order of relative polymerizability was as follows: MM > MA > MAN > AN. On the other hand, the result of copolymerization of St with MMA shows that the values of the monomer reactivity ratios are r1 = 0.06 and r2 = 1.98 for St(M1)/MMA(M2). The monomer reactivity ratios of styrene (St), p-methoxystyrene (PMOS), p-methylstyrene (PMS), and p-chlorostyrene (PCS) evaluated as r1 = 0.55 and r2 = 1.07 for St(M1)/PMOS(M2), r1 = 0.38 and r2 = 0.51 for St(M1)/PMS(M2), and r1 = 0.72 and r2 = 1.25 for St(M1)/PCS(M2) were compared with those for St(M1)/MMA(M2). The copolymerization behavior is apparently different from the titanium-based Ziegler—Natta catalyst, regarding a larger monomer reactivity ratio of PCS. The lower LUMO level of PCS and MMA may enhance a back-donation process from the metal catalyst, therefore resulting in high polymerizability. These results are discussed on the basis of the energy level of the gadolinium catalyst and the HOMO and LUMO levels of the monomers. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 2591–2597, 1997  相似文献   

10.
Ferrocenylmethyl methacrylate (FMMA) was copolymerized with styrene (St), methyl methacrylate (MMA), and ethyl acrylate (EA) in benzene solution at 25°C by γ radiation. The reactions proceeded by a free radical mechanism, and monomer reactivity ratios were derived by the Tidwell–Mortimer method for St(M1)–FMMA(M2), r1 = 0.35 and r2 = 0.46; for MMA(M1–FMMA)(M2), r1 = 0.85 and r2 = 1.36; for EA(M1)–FMMA(M2), r1 = 0.36 and r2 = 3.03. The Q and e values of FMMA determined from copolymerization with St were 0.97 and 0.55, respectively. Terpolymerization of a MMA–FMMA–EA system based on the Alfrey–Goldfinger equations was studied. This is a typical terpolymerization system in which reactivities of the monomers obey the Qe scheme. Comparing the results obtained here with those previously reported for other monomers, we concluded that FMMA is one of the most highly reactive monomers among alkyl methacrylates.  相似文献   

11.
The copolymerization of vinylhydroquinone (VHQ) and vinyl monomers, e.g., methyl methacrylate (MMA), 4-vinyl-pyridine (4VP), acrylamide (AA), and vinyl acetate (VAc), by tri-n-butylborane (TBB) was investigated in cyclohexanone at 30°C under nitrogen. VHQ is assumed to copolymerize with MMA, 4VP, and AA by vinyl polymerization. The following monomer reactivity ratios were obtained (VHQ = M2): for MMA/VHQ/TBB, r1 = 0.62, r2 = 0.17; for 4VP/VHQ/TBB, r1 = 0.57, r2 = 0.05; for AA/VHQ/TBB, r1 = 0.35, r2 = 0.08. The Q and e values of VHQ were estimated on the basis of these reactivity ratios as Q = 1.4 and e = ?;1.1, which are similar to those of styrene. This suggests that VHQ behaves like styrene rather than as an inhibitor in the TBB-initiated copolymerization. No homopolymerization was observed either under nitrogen or in the presence of oxygen. The reaction mechanism is discussed.  相似文献   

12.
By using sodium dodecyl sulfate (SDS) and pentanol (PTL) as emulsifiers, the oil‐in‐water microemulsion containing N‐butyl maleimide (NBMI, M1) and styrene (St, M2) was prepared. The microemulsion copolymerization using potassium persulfate (KPS) as an initiator was investigated. On the basis of kinetic model proposed by SHAN Guo‐Rong, the reactivity ratios of free monomers and the charge‐transfer complex (CTC) in the copolymerization were found to be r12 = 0.0420, r21 = 0.0644, r1C = 0.00576 and r2C = 0.00785, respectively. A kinetic treatment based on this model was used to quantitatively estimate the contribution of CTC to the total copolymerization rate in the NBMI/St copolymerization. It was about 17.0–20.0% for a wide range of monomer feed ratios.  相似文献   

13.
14.
Studies on gelation in the radical polymerization of diallyl dicarboxylates have been conducted by Simpson,9,11 Gordon,10 and Oiwa.13 However, the results obtained have not always been consistent and are still far from full elucidations. In this paper, the gel point in the polymerization of diallyl aromatic dicarboxylates, including diallyl phthalate (DAP), diallyl isophthalate (DAI), and diallyl terephthalate (DAT) is experimentally reexamined in detail and discussed according to Gordon's theory; the discrepancy between actual and theoretical gel point conversion was quite large and was enhanced in the order DAT > DAI > DAP. Moreover, from detailed inquiry into the primary chain length of the prepolymer it is suggested that the intramolecular chain transfer reaction plays an important role in the polymerization of diallyl ester accompanying the intramolecular cyclization reaction. The polydispersity coefficient (P w,0/P n,0) of the initial prepolymer of DAP is also estimated to be 2.0 from the extrapolation of P w/P n to zero conversion.  相似文献   

15.
2,2′‐Azobis(N‐(2‐propenyl)‐2‐methylpropionamide) (APMPA) having two carbon‐carbon double bonds and an azo group was copolymerized with allyl benzoate (ABz) at 60°C, providing an azo groups containing ABz/APMPA crosslinked polymer which may act as an insoluble polymeric azo initiator. The gelation in ABz/APMPA (70/30 mol/mol) copolymerization was discussed in detail in order to reveal the characteristic polymerization behavior of APMPA as a novel diallyl monomer. The effectiveness of the resulting ABz/APMPA crosslinked polymer to give a soluble graft polymer through cleavage of the azo crosslinkages at an elevated temperature was then examined by polymerizing ABz at 120°C.  相似文献   

16.
The polymerization of trimethylvinylgermane (TMGeV) with the use of γ-ray, radical, and ionic initiator was attempted, but homopolymer was not obtained. This monomer did not undergo polymerization by itself, but polymerized with high concentration of n-BuLi. Copolymerization of TMGeV with styrene (St) and methyl methacrylate (MMA) was carried out by using radical initiator. From the results obtained by the copolymerization, monomer reactivity ratios and Qe values were obtained as follows: for the system St(M1)–TMGeV (M2), r1 = 24.4, r2 = 0.009, Q2, = 0.0049, e2 = 0.43; for the system MMA (M1)–TMGeV (M2), r1 = 19.98, r2 = 0.05; Q2 = 0.037, e2 = 0.43., The polymerizability of TMGeV is discussed on the basis of the Q and e values obtained.  相似文献   

17.
The ethylene (M1)–vinyl acetate (M2) copolymerization at 62°C and 35 kg/cm2 with α,α′-azo-bisisobutyronitrile as initiator has been studied in four different solvents, viz., tert-butyl alcohol, isopropyl alcohol, benzene, and N,N-dimethylformamide. The experimental method used was based on frequent measurement of the composition of the reaction mixture throughout the copolymerization reaction by means of quantitative gas chromatographic analysis. Highly accurate monomer reactivity ratios have been calculated by means of the curve-fitting I procedure. The observed dependence of the r values on the nature of the solvent is surprisingly large and can be correlated with the volume changes (= excess volumes) observed on mixing vinyl acetate (VAc) with the relevant solvent. An increased hydrogen bonding or dipole–dipole interaction through the carbonyl moiety of the acetate side group of VAc, induces a decreased electron density on the vinyl group of VAc, which in turn leads to a decreased VAc reactivity. The differences among the overall rates of copolymerization in the various solvents can be interpreted in terms of a variable chain transfer to solvent and the rate of the subsequent reinitiation by the solvent radical. In the case of benzene, complex formation is believed to play an important part.  相似文献   

18.
4-Phenyl-2-butene (4Ph2B) undergoes monomer-isomerization copolymerization with 4-methyl-2-pentene (4M2P) and 2-and 3-heptene (2H and 3H) with TiCl3–(C2H5)3Al catalyst at 80°C to produce copolymer consisting exclusively of 1-olefin units. For comparison the copolymerization of 4-phenyl-1-butene (4Ph1B) with 4-methyl-1-pentene (4M1P) and 1-heptene (1H) was carried out under similar conditions. The composition of the copolymers obtained from these copolymerizations was determined from the ratios of optical densities D1380 and D1600 of infrared (IR) spectra of their thin films. The apparent monomer reactivity ratios for the monomer-isomerization copolymerization of 4Ph2B with 4M2P, 2H, and 3H in which the concentration of olefin monomer in the feed was used as internal olefin and those for the copolymerization of 4Ph1B with 4M1P and 1H were determined as follows: 4Ph2B(M1)-4M2P(M2); r1 = 0.90, r2 = 0.20, 4Ph1B(M1)-4M1P (M2); r1 = 0.40, r2 = 0.70, 4Ph2B(M1)-2H(M2); r1, = 0.45, r2 = 1.85, 4Ph2B(M1)-3H(M2); r1 = 0.50, r2 = 1.20, 4Ph1B(M1)-1H(M2); r1 = 0.55, r2 = 0.75. The difference in monomer reactivity ratios seemed to originate from the rate of isomerization from 2- or 3-olefins to 1-oletins in these monomer-isomerization copolymerizations.  相似文献   

19.
Free radical-initiated copolymerization of diethyl vinyl phosphate (DEVPA) with vinyl acetate (VAc) and acrylonitrile (AN) was studied. The monomer reactivity ratios for the monomer pairs, determined at 60°C using benzoyl peroxide as an initiator, are: r1(VAc) = 0.95, r2(DEVPA) = 0.93; r1(AN) = 6.6, r2(DEVPA) = 0.049. The values of the Alfrey-Price constants, Q and e, for DEVPA were calculated to be 0.025 and 0.13, respectively, from the VAc system, and 0.026 and 0.14, respectively, from the AN/DEVPA pair. These results indicate that the general reactivity of DEVPA is almost the same as that of VAc and that the diethylphosphate group is a stronger electron-attracting group than the acetoxy group. The intrinsic viscosity and number-average molecular weight of copolymers decreased as their content of DEVPA units increased, indicating a high degree of chain transfer caused by DEVPA.  相似文献   

20.
Abstract

2,4,5-Tribromostyrene (TBSt) was copolymerized with styrene (St) or acrylonitrile (AN) in toluene solution using 2,2′-azobisisobutyronitrile as free radical initiator. The copolymerization reactivity ratios were found to be for the system TBSt/St r 1 = 1.035 ± 0.164 (TBSt) and r 2 = 0.150 ± 0.057 (St), and for the system TBSt/AN r 1 = 2.445 ± 0.270 (TBSt) and r 2 = 0.133 ± 0.054 (AN). The e and Q values were also calculated. The initial copolymerization rate, R p, for both systems linearly increases as the content of TBSt in the monomer mixture increases. However, these values are somewhat higher when AN was used as a comonomer. A similar behavior has also been established for the course of the copolymerization reactions to high conversion. The resulting copolymers and TBSt-homopolymer show similar thermal stabilities of polystyrene. However, the glass transition temperature increases markedly with increasing TBSt content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号