首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High Pressure Syntheses of Carbonates. VIII. Thallium Lanthanoid Carbonates The ternary carbonates TlLn(CO3)2 with Ln = La to Lu and Y are synthesized at 350°C by dehydration of the carbonates TlLn(CO3)2 · xH2O or at 500°C by reaction of Tl2CO3 and Ln2(C2O4)3 · yH2O under 3000 bar CO2. X-ray and IR investigations show the existence of five different structures. The compound Tl5La(CO3)4 is synthesized and X-ray and IR investigations were performed.  相似文献   

2.
Basic Carbonates of Dysprosium: Dy2O2(CO3) and Dy(OH)(CO3) Single crystals of the basic carbonates Dy2O2(CO3) and Dy(OH)(CO3) are obtained via hydrothermal synthesis from a mixture of DyCl3 · 6 H2O and K2CO3 and Cs2CO3, respectively, as well as CO2 and H2O in a steel autoclave at 480 and 400 °C, respectively. The crystal structures are isotypic with those of II‐Nd2O2(CO3) and B–Nd(OH)(CO3), respectively; Dy2O2(CO3): hexagonal, P63/mmc, Z = 2; a = 386.9(2), c = 1516.3(3) pm; Dy(OH) · (CO3): hexagonal, P‐6, Z = 18; a = 1201.0(1), c = 971.8(9) pm.  相似文献   

3.
High Pressure Syntheses of Carbonates. VI. Sodium Lanthanoid Carbonates The ternary carbonates NaLn(CO3)2 with Ln = La to Lu and Y are synthesized by dehydration of NaLn(CO3)2 · xH2O or by reaction of Na2CO3 with Ln2(C2O4)3 · xH2O under 3000 bar CO2 and 350–500°C. Two structures are found, characterized by IR and X-ray investigations and by thermal decomposition.  相似文献   

4.
High-Pressure-Synthesis of Carbonates. III. Synthesis of Carbonates of Divalent Metals by Decomposition of their Oxalates under High CO2 Pressure The carbonates MCO3 (M = Mn, Fe, Co, Ni, Zn, Cd) are prepared by decomposition of their oxalates under CO2 pressure up to 3500 bar. The synthesis of CuCO3 runs only in presence of an oxidizing agent. VCO3 · 0,5 H2O is prepared from VCO3 · 2H2O under CO2 pressure. CrCO3 mixed with Cr2O3 arises from Cr(CO)6 under CO2 pressure.  相似文献   

5.
High Pressure Syntheses of Carbonates. V. Syntheses of Carbonates by Melt Reactions under High CO2 Pressure Binary compounds of transition metals react in melts of Tl2CO3 under CO2 pressure from 1 000 to 5 000 bar by giving ternary carbonates. By this the compounds Tl2Cu(CO3)2, TlCr(CO3)2, Tl3Cr(CO3)3, and Tl3V(CO2)3 could be prepared. The structure of Tl2Cu(CO3)2 contains Cu2 groups (a0 = 7.583 Å, b0 = 9.799 Å, c0 = 9.119 Å, β 111.51°, Z = 4, space group P21/c Nr. 14). The space group of TlCr(CO3)2 is also P21/c Nr. 14 (a0 = 19.917 Å, b0 = 8.605 Å, c0 = 19.138 Å, β = 104.79°, Z = 24). The compounds too were characterized by infrared spectroscopy.  相似文献   

6.
Carbonate Hydrates of the Heavy Alkali Metals: Preparation and Structure of Rb2CO3 · 1.5 H2O und Cs2CO3 · 3 H2O Rb2CO3 · 1.5 H2O and Cs2CO3 · 3 H2O were prepared from aqueous solution and by means of the reaction of dialkylcarbonates with RbOH and CsOH resp. in hydrous alcoholes. Based on four‐circle diffractometer data, the crystal structures were determined (Rb2CO3 · 1.5 H2O: C2/c (no. 15), Z = 8, a = 1237.7(2) pm, b = 1385.94(7) pm, c = 747.7(4) pm, β = 120.133(8)°, VEZ = 1109.3(6) · 106 pm3; Cs2CO3 · 3 H2O: P2/c (no. 13), Z = 2, a = 654.5(2) pm, b = 679.06(6) pm, c = 886.4(2) pm, β = 90.708(14)°, VEZ = 393.9(2) · 106 pm3). Rb2CO3 · 1.5 H2O is isostructural with K2CO3 · 1.5 H2O. In case of Cs2CO3 · 3 H2O no comparable structure is known. Both structures show [(CO32–)(H2O)]‐chains, being connected via additional H2O forming columns (Rb2CO3 · 1.5 H2O) and layers (Cs2CO3 · 3 H2O), respectively.  相似文献   

7.
Potassium Lanthanoid Carbonates, KM(CO3)2 (M ? Nd, Gd, Dy, Ho, Yb) The ternary potassium lanthanoid carbonates KM(CO3)2 (M ? Nd, Gd, Dy, Ho, Yb) are obtained as single crystals by high-pressure synthesis in steel autoclaves with carbon dioxide (starting pressure approximately 50 bar at ambient temperature) in the presence of water from a mixture of K2CO3 and MCl3 · x H2O (x = 7 and 6, respectively) at 450°C within 4 weeks. In KNd(CO3)2 (orthorhombic, Pmn21, Z = 4, a = 973.1(2), b = 645.69(8), c = 855.58(14) pm, R1 = 0.0763 for all data) [Nd-μ1-(CO3)32-(CO3)3] polyhedra are connected three-dimensionally to [Nd(CO3)] layers as similarly in UO2(CO3); these layers are connected via the second half of the carbonate ligands and K+ ions. In KDy(CO3)2 (monoclinic, C2/c, Z = 4, a = 853.8(2), b = 949.1(1), c = 694.5(1) pm, β = 111.1(2)°, R1 = 0.0266 for all data) and in the isotypic carbonates KM(CO3)2 (M = Gd, Ho, Yb) the polyhedra [Dy-μ1-(CO3)42-(CO3)2] and [K-μ1-(CO3)6] are connected to “syndiotactic” zig-zag chains and by further O-ligator atoms of the carbonate ligands such that each zig-zag chain is surrounded by four unlike chains and vice versa.  相似文献   

8.
Single crystals of fluoride hydrates Mn3F8 · 12 H2O and AgMnF4 · 4 H2O have been prepared and characterized by X-ray methods. Mn3F8 · 12 H2O crystallizes in the space group P1 (a = 623.0(3), b = 896.7(4), c = 931.8(4) pm, α = 110.07(2)°, β = 103.18(2)°, γ = 107.54(2)°, Z = 1); AgMnF4 · 4 H2O crystallizes in the space group P21/m (a = 700.9(2), b = 726.1(1), c = 749.4(3) pm, β = 107.17(3)°, Z = 2). Both structures contain Jahn-Teller-distorted [Mn(H2O)2F4]? anions as well as crystal water molecules and exhibit a complex hydrogen bond network between anions and cations, i. e. [Mn(H2O)6]2+ for the first and a polymeric [Ag(H2O)2]? cation for the second compound.  相似文献   

9.
In den Systemen FeSO3? H2O und NiSO3? H2O konnten folgende Hydrate erhalten werden: α-FeSO3 · 3H2O, γ-FeSO3 · 3H2O, FeSO3 · 2,5 H2O, FeSO3 · 2 H2O, NiSO3 · 6 H2O, NiSO3 · 3 H2O, NiSO3 · 2,5 H2O und NiSO3 · 2 H2O. Die Gitterdaten der folgenden Hydrate wurden anhand von Einkristallmessungen bestimmt: γ-FeSO3 · 3 H2O: a = 965,9(1), b = 557,1(1), c = 944,7(1) pm, Z = 4, FeSO3 · 2 H2O (P21/n): a = 645,6(1), b = 863,1(1), c = 761,2(1) pm, β = 99,84(1)°, Z = 4, NiSO3 · 3 H2O: a = 945,0(1), b = 547,2(1), c = 932,5(1) pm, Z = 4, NiSO3 · 2,5 H2O (P41212): a = b = 935,3(1), c = 1016,6(1) pm, Z = 8, NiSO3 · 2 H2O (P21/n): a = 631,4(1), b = 851,0(1), c = 744,7(1) pm, β = 98,91(1)°, Z = 4. Die IR- und Raman-Spektren sowie das Ergebnis thermoanalytischer Messungen (DTA, DTG, Röntgenheizaufnahmen) werden mitgeteilt. Die bei Sulfiten und Sulfithydraten zweiwertiger Metalle bisher beobachteten Strukturtypen werden diskutiert. Sulfites and Sulfite Hydrates of Iron and Nickel. X-ray, Thermoanalytical, I.R., and Raman Data In the systems FeSO3? H2O and NiSO3? H2O the following hydrates have been found: α-FeSO3 · 3H2O, γ-FeSO3 · 3H2O, FeSO3 · 2,5 H2O, FeSO3 · 2 H2O, NiSO3 · 6 H2O, NiSO3 · 3 H2O, NiSO3 · 2,5 H2O and NiSO3 · 2 H2O. The following crystal data have been determined by single crystal measurements: γ-FeSO3 · 3 H2O: a = 965,9(1), b = 557,1(1), c = 944,7(1) pm, Z = 4, FeSO3 · 2 H2O (P21/n): a = 645,6(1), b = 863,1(1), c = 761,2(1) pm, β = 99,84(1)°, Z = 4, NiSO3 · 3 H2O: a = 945,0(1), b = 547,2(1), c = 932,5(1) pm, Z = 4, NiSO3 · 2,5 H2O (P41212): a = b = 935,3(1), c = 1016,6(1) pm, Z = 8, NiSO3 · 2 H2O (P21/n): a = 631,4(1), b = 851,0(1), c = 744,7(1) pm, β = 98,91(1)°, Z = 4. IR, Raman, and thermoanalytical (DTA, DTG, high temperature X-ray) data are presented. The structure types found for sulfites and sulfite hydrates of bivalent metals are discussed.  相似文献   

10.
Preparation and Crystal Structures of the first Alkalimetall‐hexacarbonato‐oxotetraberyllates: K6[Be4O(CO3)6] · 7 H2O and K6[Be4O(CO3)6] K6[Be4O(CO3)6] · 7 H2O has been prepared by dissolving freshly precipitated Be(OH)2 in an aqueous KHCO3 solution. After enriching the title compound by extraction with ethanol the heptahydrate crystallizes from the organic phase (triklin, P1¯ (No. 2) with a = 951, 01(11), b = 958, 45(12), c = 1601, 7(2) pm, α = 79, 253(13)°, β = 78, 943(12)°, γ = 65, 119(12)°, VEZ = 1290, 6(3)·106 pm3, Z = 2). Thermal decomposition forms rhombohedral crystals of the anhydrous compound (trigonal‐rhombohedric, R3¯ (No. 148) with a = 1416, 42(6), c = 1704, 5(1) pm, VEZ = 2961, 4(3)·106 pm3, Z = 6).  相似文献   

11.
Reactions of a freshly prepared Zn(OH)2‐2x(CO3)x · yH2O precipitate, phenanthroline with azelaic and sebacic acid in CH3OH/H2O afforded [Zn(phen)(C9H15O4)2] ( 1 ) and [Zn2(phen)2(H2O)2(C10H16O4)2] · 3H2O ( 2 ), respectively. They were structurally characterized by X‐ray diffraction methods. Compound 1 consists of complex molecules [Zn(phen)(C9H15O4)2] in which the Zn atoms are tetrahedrally coordinated by two N atoms of one phen ligand and two O atoms of different monodentate hydrogen azelaato groups. Intermolecular C(alkyl)‐H···π interactions and the intermolecular C(aryl)‐H···O and O‐H···O hydrogen bonds are responsible for the supramolecular assembly of the [Zn(phen)(C9H15O4)2] complexes. Compound 2 is built up from crystal H2O molecules and the centrosymmetric binuclear [Zn2(phen)2(H2O)2(C10H16O4)2] complex, in which two [Zn(phen)(H2O)]2+ moieties are bridged by two sebacato ligands. Through the intermolecular C(alkyl)‐H···O hydrogen bonds and π‐π stacking interactions, the binuclear complex molecules are assembled into layers, between which the lattice H2O molecules are sandwiched. Crystal data: ( 1 ) C2/c (no. 15), a = 13.887(2), b = 9.790(2), c = 22.887(3)Å, β = 107.05(1)°, U = 2974.8(8)Å3, Z = 4; ( 2 ) P1¯ (no. 2), a = 8.414(1), b = 10.679(1), c = 14.076(2)Å, α = 106.52(1)°, β = 91.56(1)°, γ = 99.09(1)°, U = 1193.9(2)Å3, Z = 1.  相似文献   

12.
For the first time aqua pentafluoro manganate(III) compounds with different organic N-cations have been prepared and their crystal structures have been determined: N,N′-DMenH2[MnF5(H2O)] · H2O 1 (N,N′-DMen = N,N′-Dimethylethylenediamine), space group P21/c, a = 916.0, b = 1004.8, c = 1247.9 pm, β = 106.03°, R = 0.035; NMpipzH2 · [MnF5(H2O)] · H2O 2 (NMpipz = N-Methylpiperazine), space group P21/n, a = 757.7, b = 1261.9, c = 1197.1 pm, β = 105.09°, R = 0.027; N,N′-DMpipzH2[MnF5(H2O)] · 2 HF 3 (N,N′-DMpipz = N,N′-Dimethylpiperazine), space group P1, a = 677.1, b = 863.9, c = 1187.7 pm, α = 79.18°, β = 81.63° γ = 67.62°, R = 0.026; and N,N-DMenH2[MnF5(H2O)] · 1/2 HF 4 (N,N-DMen = N,N-Dimethylethylenediamine), space group P1, a = 859.3, b = 1086.5, c = 1092.0 pm, α = 86.96°, β = 78.52° γ = 89.01°, R = 0.035. In all compounds the [MnF5(H2O)]2– octahedra are connected via H-bonds forming 3 D and 2 D network arrangements. The anions are strongly elongated by the Jahn-Teller effect. The FTIR spectra are presented.  相似文献   

13.
The synthesis routes of Gd(HCO3)3 · 5H2O and Ho(HCO3)3 · 6H2O, which are the only known bicarbonates of rare earth metals, were refuted and the published crystal structures were discussed. Because of the structural relationship of Ho(HCO3)3 · 6H2O to rare earth nitrate hexahydrates, 1 the synthesis of holmium nitrate hydrate was considered and the crystal structure of Ho(NO3)3 · 5H2O was solved by single crystal X‐ray diffraction measurements. Ho(NO3)3 · 5H2O was determined to crystallize in the triclinic space group P1 (no. 2) with a = 6.5680(14) Å, b = 9.503(2) Å, c = 10.462(2) Å, α = 63.739(14)°, β = 94.042(2)° and γ = 76.000(16)°. The crystal structure consists of isolated [Ho(H2O)4(NO3)3] polyhedra and non‐coordinating water molecules. It is isotypic to other rare earth nitrate pentahydrates.  相似文献   

14.
Hydrothermal syntheses of single crystals of rare earth iodates, by decomposition of the corresponding periodate, are presented. This appears to be a generic method for making rare earth iodate crystals in a short period of time. Single crystal X‐ray diffraction structures of the four title compounds are presented. Sc(IO3)3: Space group R3, Z = 6, lattice dimensions at 100 K; a = b = 9.738(1), c = 13.938(1) Å; R1 = 0.0383. Y(IO3)3 · 2 H2O: Space group P1, Z = 2, lattice dimensions at 100 K: a = 7.3529(2), b = 10.5112(4), c = 7.0282(2) Å, α = 105.177(1)°, β = 109.814(1)°, γ = 95.179(1)°; R1 = 0.0421. La(IO3)3 · ? H2O: Space group Pn, Z = 2, lattice dimensions at 100 K: a = 7.219(2), b = 11.139(4), c = 10.708(3) Å, β = 91.86(1)°; R1 = 0.0733. Lu(IO3)3 · 2 H2O: Space group P1, Z = 2, lattice dimensions at 120 K: a = 7.2652(9), b = 7.4458(2), c = 9.3030(3) Å, α = 79.504(1)°, β = 84.755(1)°, γ = 71.676(2)°; R1 = 0.0349.  相似文献   

15.
On the Alkali Selenoarsenates(III) KAsSe3 · H2O, RbAsSe3 · 1/2 H2O, and CsAsSe3 · 1/2 H2O The alkali selenoarsenates(III) KAsSe3 · H2O, RbAsSe3 · 1/2 H2O, and CsAsSe3 · 1/2 H2O have been prepared by hydrothermal reaction of the respective alkali carbonate with As2Se3 at a temperature of 135°C. Their X-ray structural analyses demonstrated that the compounds contain polyselenoarsenate(III) anions (AsSe3?)n, in wich the basic units are ψ-AsSe3 tetrahedra, which are linked together through Se? Se bonds into infinite zweier single chains. The Rb and Cs salts are isotypic.  相似文献   

16.
The blue copper complex [Cu2(H2O)2(phen)2(OH)2][Cu2(phen)2(OH)2(CO3)2] · 10 H2O, which was prepared by reaction of 1,10‐phenanthroline monohydrate, CuCl2 · 2 H2O and Na2CO3 in the presence of succinic acid in CH3OH/H2O at pH = 13.0, crystallized in the triclinic space group P1 (no. 2) with cell dimensions: a = 9.515(1) Å, b = 12.039(1) Å, c = 12.412(2) Å, α = 70.16(1)°, β = 85.45(1)°, γ = 81.85(1)°, V = 1323.2(2) Å3, Z = 1. The crystal structure consists of dinuclear [Cu2(H2O)2(phen)2(OH)2]2+ complex cations, dinuclear [Cu2(phen)2(OH)2(CO3)2]2– complex anions and hydrogen bonded H2O molecules. In both the centrosymmetric dinuclear cation and anion, the Cu atoms are coordinated by two N atoms of one phen ligand, three O atoms of two μ‐OH groups and respectively one H2O molecule or one CO32– anion to complete distorted [CuN2O3] square‐pyramids with the H2O molecule or the CO32– anion at the apical position (equatorial d(Cu–O) = 1.939–1.961 Å, d(Cu–N) = 2.026–2.051 Å and axial d(Cu–O) = 2.194, 2.252 Å). Two adjacent [CuN2O3] square pyramids are condensed via two μ‐OH groups. Through the interionic hydrogen bonds, the dinuclear cations and anions are linked into 1D chains with parallel phen ligands on both sides. Interdigitation of phen ligands of neighboring 1D chains generated 2D layers, between which the hydrogen bonded water molecules are sandwiched.  相似文献   

17.
The new hexathiodiphosphate(IV) hydrates K4[P2S6] · 4 H2O ( 1 ), Rb4[P2S6] · 6 H2O ( 2 ), and Cs4[P2S6] · 6 H2O ( 3 ) were synthesized by soft chemistry reactions from aqueous solutions of Na4[P2S6] · 6 H2O and the corresponding heavy alkali‐metal hydroxides. Their crystal structures were determined by single crystal X‐ray diffraction. K4[P2S6] · 4 H2O ( 1 ) crystallizes in the monoclinic space group P 21/n with a = 803.7(1), b = 1129.2(1), c = 896.6(1) pm, β = 94.09(1)°, Z = 2. Rb4[P2S6] · 6 H2O ( 2 ) crystallizes in the monoclinic space group P 21/c with a = 909.4(2), b = 1276.6(2), c = 914.9(2) pm, β = 114.34(2)°, Z = 2. Cs4[P2S6] · 6 H2O ( 3 ) crystallizes in the triclinic space group with a = 742.9(2), b = 929.8(2), c = 936.8(2) pm, α = 95.65(2), β = 112.87(2), γ = 112.77(2)°, Z = 1. The structures are built up by discrete [P2S6]4? anions in staggered conformation, the corresponding alkali‐metal cations and water molecules. O ··· S and O ··· O hydrogen bonds between the [P2S6]4? anions and the water molecules consolidate the structures into a three‐dimensional network. The different water‐content compositions result by the corresponding alkali‐metal coordination polyhedra and by the prefered number of water molecules in their coordination sphere, respectively. The FT‐Raman and FT‐IR/FIR spectra of the title compounds have been recorded and interpreted, especially with respect to the [P2S6]4? group. The thermogravimetric analysis showed that K4[P2S6] · 4 H2O converted to K4[P2S6] as it was heated at 100 °C.  相似文献   

18.
Synthesis, Structure, and Properties of Three Tetrasodium Tetrametaphosphimate Hydrates Single crystals of three tetrasodium tetrametaphosphimate hydrates Na4(PO2NH)4 · x H2O with x = 2 and 3, respectively, have been obtained and characterized by single crystal X-ray diffraction. Dimorphous Na4(PO2NH)4 · 3 H2O is formed at RT. It crystallizes monoclinic ( 1 ) or triclinic ( 2 ) (α-Na4(PO2NH)4 · 3 H2O ( 1 ): P21, a = 1002.7(2), b = 1189.7(2), c=1193.1(2)pm, β=104.93(1)°, Z=4; β-Na4(PO2NH)4 · 3 H2O ( 2 ): P 1¯, a = 843.64(9), b = 848.54(10), c = 994.7(2) pm, α = 83.07(1), β = 76.31(1), γ = 87.46(1)°, Z = 2). Compound 2 is formed in the presence of NaCl during the crystallization from aqueous solution. Tetrasodium tetrametaphosphimate dihydrate ( 3 ) is formed at 60 °C (Na4(PO2NH)4 · 2 H2O ( 3 ): C2/c, a = 2225.6(3), b = 513.0(1), c = 1566.7(2) pm, β = 134.21(1)°, Z = 4). In 1 and 2 the P4N4 ring of the tetrametaphosphimate ions attains a saddle and in 3 a twistboat conformation. The conformations of the anions have been analysed using torsion angles, displacement asymmetry parameters, and puckering parameters. The (PO2NH)44– rings of the compounds 1 , 2 , and 3 are linked by N–H · · &mid  相似文献   

19.
Single and Double Deprotonated Maleic Acid in Praseodymium Hydrogenmaleate Octahydrate, Pr(C4O4H3)3 · 8 H2O, and Praseodymiummaleatechloride Tetrahydrate, Pr(C4O4H2)Cl · 4 H2O Single crystals of Pr(C4O4H3)3 · 8 H2O grew by slow evaporation of a solution which had been obtained by dissolving Pr(OH)3 in aqueous maleic acid. The triclinic compound (P1, Z = 2, a = 728.63(3), b = 1040.23(3), c = 1676.05(8) pm, α = 72.108(2)°, β = 87.774(2)°, γ = 70.851(2)°, Rall = 0.0261) contains Pr3+ ions in ninefold coordination of oxygen atoms which belong to two monodentate maleate ions and seven H2O molecules. There is one further non‐coordinating maleate ion and one crystal water molecule in the unit cell. Thermal treatment of Pr(C4O4H3)3 · 8 H2O leads first to the anhydrous compound which then decomposes to the respective oxide in two steps upon further heating. Evaporation of a solution of Pr(C4O4H3)3 · 8 H2O which contained additional Cl ions yielded single crystals of Pr(C4O4H2)Cl · 4 H2O. In the crystal structure (monoclinic, P21/c, Z = 4, a = 866.0(1), b = 1344.3(1), c = 896.9(1) pm, β = 94.48(2)°, Rall = 0.0227), the Pr3+ ions are surrounded by nine oxygen atoms. The latter belong to four H2O molecules and three maleate ions. Two of the latter act as bidentate ligands.  相似文献   

20.
The thermal decomposition of thiosulphatobismuthates(III) of alkali metals was investigated. The general formulae of the thiosulphatobismuthates are M3[Bi(S2O3)3]·H2O where M = Na, K, Rb or Cs, and M2Na[Bi(S2O3)3]·H2O where M = K or Cs.Typical thermal curves for thiosulphatobismuthates(III) and the results obtained in thermal, X-ray, chemical and spectrophotometrical analyses of the decomposition products are shown. The results were used to determine three stages of the thermal decomposition. At the first stage, at about 200°C, hydrated compounds are dehydrated. At the second stage, above 200°C, there is a rapid decrease in mass which is caused by evolving sulphur dioxide; bismuth sulphide and an intermediate decomposition product are formed. At about 320°C the thermal decomposition products are bismuth sulphide and alkali metal sulphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号