首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The distribution of doubly charged ions found in the mass spectra of various N, N′-alkyl substituted phenylenediamines is compared to that of their singly charged counterparts. Structural and electronic requirements for the resonance stabilization of doubly charged organic ions are suggested and it is shown that doubly charged ions could be used to differentiate between certain structural isomers which give practically identical singly charged ions. The doubly charged ions were distinguished from singly charged ions of the same integral m/e value by high resolution techniques.  相似文献   

2.
The doubly charged ion mass spectra for 12 aliphatic nitriles (1–9 carbon atoms) have been obtained using an Hitachi RMU-7L double focusing mass spectrometer. These spectra show some characteristic features such as extensive loss of hydrogen and the grouping of ions in the spectra into n-1 groups where n is the number of carbon atoms in the molecule (n<6). There are no indications of HCN or CN loss in the doubly charged ion spectra of the monosubstituted nitriles. SCF calculations of the energy and structure of doubly charged ions in the propionitrile spectra have been carried out.  相似文献   

3.
We report non‐chiral amino acid residues cis‐ and trans‐1,4‐diaminocyclohexane‐1‐carboxylic acid (cyclo‐ornithine, cO) that exhibit unprecedented stereospecific control of backbone dissociations of singly charged peptide cations and hydrogen‐rich cation radicals produced by electron‐transfer dissociation. Upon collision‐induced dissociation (CID) in the slow heating regime, peptide cations containing trans‐cO residues undergo facile backbone cleavages of amide bonds C‐terminal to trans‐cO. By contrast, peptides with cis‐cO residues undergo dissociations at several amide bonds along the peptide ion backbone. Diastereoisomeric cO‐containing peptides thus provide remarkably distinct tandem mass spectra. The stereospecific effect in CID of the trans‐cO residue is explained by syn‐facially directed proton transfer from the 4‐ammonium group at cO to the C‐terminal amide followed by neighboring group participation in the cleavage of the CO―NH bond, analogous to the aspartic acid and ornithine effects. Backbone dissociations of diastereoisomeric cO‐containing peptide ions generate distinct [bn]+‐type fragment ions that were characterized by CID‐MS3 spectra. Stereospecific control is also reported for electron‐transfer dissociation of cis‐ and trans‐cO containing doubly charged peptide ions. The stereospecific effect upon electron transfer is related to the different conformations of doubly charged peptide ions that affect the electron attachment sites and ensuing N―Cα bond dissociations.  相似文献   

4.
The mass spectra of biological molecules, whose molecular mass exceeds 10 kDa, invariably contain multiply charged ions. For example, a survey scan of a small protein will produce singly, doubly and triply protonated molecules, the intensity of the doubly charged species often being greater than that of the singly charged entity. Although the spectra resulting from doubly charged peptides have not previously been studied, collisional activation of such doubly charged species may result in significant additional information pertaining to molecular structure. The techniques employed to study ions originating from multiply charged species were linked scanning of constant B/E and tandem mass spectrometry, namely low collision energy spectra acquired on a BEQQ hybrid instrument. The methodology was applied to model compounds whose tandem mass spectrometry characteristics are well known, e.g. gramicidin S and angiotensin I. The results for the product ions of the [M + 2H]2+ species of the models were obtained which highlight the methodology required for high-mass materials.  相似文献   

5.
The doubly charged [M]2+, [M+1]2+ and [M-O]2+ ions are observed in the field ionization mass spectra of para substituted acetophenones. The effect of the type of the substituent on the formation of the doubly charged ions is described.  相似文献   

6.
Doubly charged ion mass spectra of 22 amines (2–10 carbon atoms) were determined using an Hitachi RMU-7L double focusing mass spectrometer. Molecular ions were not observed in the spectra of aliphatic amines. The most intense product ion peaks in the spectra of lower molecular weight amines resulted from hydrogen elimination from the molecular ion; however, as amine molecular weight increased the largest peaks resulted from both hydrogen and heavy atom elimination from the molecular ion. Dominant ions in the doubly charged ion spectra of lower molecular weight aliphatic amines were from reactions of [CnH3N]2+ (n:=2, 3, 4) type ions. The spectra of higher molecular weight aliphatic amines spanned a wide mass range. Appearance energies for some of the more prominent ions were measured in the range from 25 to 49 eV. A geometry optimized quantum mechanical self-consistent field molecular orbital treatment was used to compute the energies and structural parameters of prominent ions in the doubly charged ion mass spectra.  相似文献   

7.
The energy dependence of fragmentation in a collision cell was measured for 2400 protonated peptide ions derived from the digestion of 24 proteins. The collision voltage at which the sum of the fragment ion abundances was equal to the remaining parent ion (V 1/2) was the principal measure of fragmentation effectiveness. Each class of peptides was characterized by a linear relation between V 1/2 and m/z whose slope depended on the peptide class and, with little adjustment, intersected the origin. Peptide ions where the number of protons is no greater than the number of arginine residues show the greatest slope, V 1/2/(m/z)=0.0472 (all slopes in units of V Da−1 e). For peptides where the number of protons is greater than the number of arginines, but not greater than the total number of basic residues, the slope decreases to 0.0414 for singly charged ions, 0.0382 for doubly charged, 0.0346 for triply charged, and 0.0308 for more highly charged ions. With one mobile proton, the slope is about 0.029 for singly and doubly charged ions and slightly lower for more highly charged ions. With two or more mobile protons the slope is 0.0207. By removing m/z dependence, the deviation of V 1/2 from a line provides a relative measure of the ease of fragmentation of an ion in each class. This information can guide the selection of optimal conditions for tandem mass spectrometry studies in collision cells for selected peptide ions as well as aid in comparing the reactivity of ions differing in m/z and charge state.  相似文献   

8.
Clusters of Ar, Kr, Xe, N2, O2, CO2, SO2 and NH3 formed by supersonic nozzle expansion have been studied by electron impact ionization mass spectrometry (up to 15000 amu). Besides mass spectra of singly charged ions showing the characteristic anomalous distributions, we have in particular investigated the properties of multiply charged cluster ions. Critical appearance sizes of doubly and triply charged cluster ions, n2 and n3 respectively, found in the present study confirm recent theoretical predictions about n3/n2 and their dependence on the properties of the cluster constituents. The appearance energies of multiply charged cluster ions determined are shifted way below the appearance energies of the respective monomer ions. These huge red shifts together with the observed linear threshold laws and large maximum ionization efficiencies indicate that multiply charged cluster ions are produced by sequential single ionization events of one incoming electron at different cluster sites. Furthermore, we have also obtained for the first time clear evidence that (for electron energies above the appearance energy of doubly charged ions) an appreciable amount of singly charged (also fragment) ions is produced via Coulomb explosion of unstable doubly charged ions in the ion source.  相似文献   

9.
The doubly charged isomeric ions [C6H7N]2+ formed from 2-, 3- and 4-methylpyridine and aniline were investigated via their unimolecular charge separation reactions and by electron capture induced decompositions (ECID). The ECID spectra were compared with the collision induced decomposition (CID) spectra of the singly charged ions in an attempt to investigate the structure of the doubly charged ions. The four isomers could be unambiguously identified by their unimolecular charge separations. These differences were greater than in the mass spectra, ECID spectra or CID spectra of singly charged ions.  相似文献   

10.
Differentiation between two isomers of hydroxypyridine N-oxide according to the metal cation adducts generated by electrospray ionization (ESI) was investigated for different metal cations, namely Mg (II), Al (III), Ca (II), Sc (III), Fe (III), Co (II), Ni (II), Cu (II), Zn (II), Ga (III), besides the diatomic cation VO(IV). Protonated molecules of the isomeric hydroxypyridine N-oxides as well as the singly/doubly charged adducts formed from neutral or deprotonated ligands and a doubly/triply charged cation were produced in the gas phase using ESI, recording mass spectra with different metal ions for each isomer. While complex formation was successful for 2-hydroxypyridine N-oxide with trivalent ions, in the case of 3-hydroxypyridine N-oxide, only peaks related to the protonated molecule were present. On the other hand, divalent cations formed specific species for each isomer, giving characteristic spectra in every case. Hence, differentiation was possible irrespective of the metal cation utilized. In addition, quantum chemical calculations at the B3LYP/6-31 + G(d,p) level of theory were performed in order to gain insight into the different complexation of calcium(II) with the isomers of hydroxypyridine N-oxide. The relative stability in the gas phase of the neutral complexes of calcium made up of two ligands, as well as the singly charged and doubly charged complexes, was investigated. The results of these calculations improved the understanding of the differences observed in the mass spectra obtained for each isomer.  相似文献   

11.
12.
Under electron ionization (EI) conditions, porphyrins yield unusually high intensities of doubly charged molecular and fragment ions. These doubly charged ions offer unique opportunities for the structure elucidation of porphyrins by tandem mass spectrometry (MS/MS). First, they fragment to a greater extent than the corresponding singly charged ions under both EI/MS and EI/MS/MS conditions. Second, doubly and singly charged porphyrin ions often fragment via different pathways, and can therefore yield different structural information. This paper describes several ways in which analyses of doubly charged porphyrin ions with a triple quadrupole tandem mass spectrometer can be useful in structure elucidation of porphyrins. The effect of the metal atom on the fragmentation of metalloporphyrins in an EI source is demonstrated by correlating the extent of doubly charged fragment ion formation to a stability index. Doubly charged porphyrin ions are shown to yield predominantly doubly charged daughter ions upon collisionally activated dissociation (CAD), and are also shown to fragment to a greater extent than corresponding singly charged porphyrin ions. Advantages and disadvantages of doubly charged porphyrin ion MS/MS for structure elucidation are discussed.  相似文献   

13.
Gas phase fragmentation of hydrogen deficient peptide radical cations continues to be an active area of research. While collision induced dissociation (CID) of singly charged species is widely examined, dissociation channels of singly and multiply charged radical cations in infrared multiphoton dissociation (IRMPD) and electron induced dissociation (EID) have not been, so far, investigated. Here, we report on the gas phase dissociation of singly, doubly and triply charged hydrogen deficient peptide radicals, [M + nH](n+1)+· (n = 0, 1, 2), in MS3 IRMPD and EID and compare the observed fragmentation pathways to those obtained in MS3 CID. Backbone fragmentation in MS3 IRMPD and EID was highly dependent on the charge state of the radical precursor ions, whereas amino acid side chain cleavages were largely independent of the charge state selected for fragmentation. Cleavages at aromatic amino acids, either through side chain loss or backbone fragmentation, were significantly enhanced over other dissociation channels. For singly charged species, the MS3 IRMPD and EID spectra were mainly governed by radical-driven dissociation. Fragmentation of doubly and triply charged radical cations proceeded through both radical- and charge-driven processes, resulting in the formation of a wide range of backbone product ions including, a-, b-, c-, y-, x-, and z-type. While similarities existed between MS3 CID, IRMPD, and EID of the same species, several backbone product ions and side chain losses were unique for each activation method. Furthermore, dominant dissociation pathways in each spectrum were dependent on ion activation method, amino acid composition, and charge state selected for fragmentation.  相似文献   

14.
The abundance of ion pairs (CA+) relative to that of doubly charged ions (C2+) in electrohydrodynamic (EH) mass spectra of a series of anions with a common dication in glycerol was found to increase in the order acetate < nitrite < chloride < bromide ≈ nitrate < iodide < perchlorate. Correlation with enthalpies of hydration for the anions suggests that this trend reflects the solution chemistry of ion association. These spectra also reveal that solvation rather than interactions with the extracting field is more important in determining the overall EH mass spectrometric sensitivity to doubly charged ions. Therefore, the use of anions that promote more extensive ion pairing enhances the overall sensitivity to multiply charged ions that otherwise interact strongly with the solvent, but reduces sensitivity to singly charged ions. These observations hold in fast atom bombardment mass spectrometry, surviving the invasive effects of the primary beam.  相似文献   

15.
The collision‐induced dissociation (CID) and electron‐induced dissociation (EID) spectra of the [(NaCl)m(Na)n]n+ clusters of sodium chloride have been examined in a hybrid linear ion trap Fourier transform ion cyclotron resonance mass spectrometer. For singly charged cluster ions (n = 1), mass spectra for CID and EID of the precursor exhibit clear differences, which become more pronounced for the larger cluster ions. Whereas CID yields fewer product ions, EID produces all possible [(NaCl)xNa]+ product ions. In the case of doubly charged cluster ions, EID again leads to a larger variety of product ions. In addition, doubly charged product ions have been observed due to loss of neutral NaCl unit(s). For example, EID of [(NaCl)11(Na)2]2+ leads to formation of [(NaCl)10(Na)2]2+, which appears to be the smallest doubly charged cluster of sodium chloride observed experimentally to date. The most abundant product ions in EID spectra are predominantly magic number cluster ions. Finally, [(NaCl)m(Na)2]+ . radical cations, formed via capture of low‐energy electrons, fragment via the loss of [(NaCl)n(Na)] . radical neutrals. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
Electron transfer and capture mass spectra of a series of doubly charged ions that were phosphorylated pentapeptides of a tryptic type (pS,A,A,A,R) showed conspicuous differences in dissociations of charge-reduced ions. Electron transfer from both gaseous cesium atoms at 100 keV kinetic energies and fluoranthene anion radicals in an ion trap resulted in the loss of a hydrogen atom, ammonia, and backbone cleavages forming complete series of sequence z ions. Elimination of phosphoric acid was negligible. In contrast, capture of low-energy electrons by doubly charged ions in a Penning ion trap induced loss of a hydrogen atom followed by elimination of phosphoric acid as the dominant dissociation channel. Backbone dissociations of charge-reduced ions also occurred but were accompanied by extensive fragmentation of the primary products. z-Ions that were terminated with a deaminated phosphoserine radical competitively eliminated phosphoric acid and H2PO4 radicals. A mechanism is proposed for this novel dissociation on the basis of a computational analysis of reaction pathways and transition states. Electronic structure theory calculations in combination with extensive molecular dynamics mapping of the potential energy surface provided structures for the precursor phosphopeptide dications. Electron attachment produces a multitude of low lying electronic states in charge-reduced ions that determine their reactivity in backbone dissociations and H- atom loss. The predominant loss of H atoms in ECD is explained by a distortion of the Rydberg orbital space by the strong dipolar field of the peptide dication framework. The dipolar field steers the incoming electron to preferentially attach to the positively charged arginine side chain to form guanidinium radicals and trigger their dissociations.  相似文献   

17.
Electron-transfer dissociation (ETD) with supplemental activation of the doubly charged deamidated tryptic digested peptide ions allows differentiation of isoaspartic acid and aspartic acid residues using the c + 57 or z − 57 peaks. The diagnostic peak clearly localizes and characterizes the isoaspartic acid residue. Supplemental activation in ETD of the doubly charged peptide ions involves resonant excitation of the charge reduced precursor radical cations and leads to further dissociation, including extra backbone cleavages and secondary fragmentation. Supplemental activation is essential to obtain a high quality ETD spectrum (especially for doubly charged peptide ions) with sequence information. Unfortunately, the low-resolution of the ion trap mass spectrometer makes detection of the diagnostic peak, [M-60], for the aspartic acid residue difficult due to interference with side-chain loss from arginine and glutamic acid residues.  相似文献   

18.
Coincidence techniques were used to study dissociative double ionization of selected n-alkanes from methane to triacontane (C30H62) and of the hexane isomers. Following photoionization at 40.8 eV, both covalent and coulombic dissociations of the molecular dications take place. The main decay route of doubly charged alkanes larger than butane is fast charge separation followed by secondary dissociation of energetic singly charged primary ions. A simulation based on quasi-equilibrium theory and the spectra of the isomers confirm this breakdown mechanism for hexane.  相似文献   

19.
The effect that charge state has on the collision-induced dissociation (CID) of peptide ions is examined in detail for several representative peptides under high-energy collision conditions. The CID spectra of singly and doubly charged precursor ions (generated by fast-atom bombardment and electrospray ionization, respectively) are compared for several peptides with similar primary structure. It is shown that for peptides that contain highly basic amino acids, the dissociation of doubly charged ions is strongly influenced by the position of these residues within the peptide and the general observations reported concerning the dissociation of singly charged ions can be extended to precursors with higher charge states. Based on the dissociation behavior of the doubly charged ions of these peptides, it is demonstrated that two charges can reside in close proximity in the precursor ions, overcoming possible repulsion effects, when favored by a high concentration of basic sites. In addition)’ this work illustrates that in the case of doubly charged ions..the charge state of some fragment ions can be determined directly from the mass-to-charge ratio assignments of the CID spectrum.  相似文献   

20.
Electron impact induced fragmentations of 2-amino-as-triazino[6,5-c]quinoline and its 2-methylamino, 2-dimethylamino and 2-benzylamino analogues have been investigated. The main primary decomposition route of both the singly and the doubly charged molecular ions is the N2 loss. For the singly charged ions the critical energy of this reaction is 110±10 kJ mol?1 and the kinetic energy release is 61±4 kJ mol?1. For the doubly charged ions these values are 90±10 kJ mol?1 and 5±2 kJ mol?1, respectively, indicating a significantly different reaction profile. The further fragmentation of [M? N2]+˙ ions consists of radical eliminations from the 2-amino group with cleavages of the α- and β-bonds. Here a significant substituent effect is eliminations found suggesting an intramolecular cyclization reaction with a substituent migration. D and 15N labelling experiments have shown a minor extent of randomization of the labelled atoms and the occurrence of other hidden skeletal rearrangements during the fragmentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号