首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Using CALYPSO method to search new structures of neutral and anionic beryllium-doped magnesium clusters followed by density functional theory (DFT) calculations, an extensive study of the structures, electronic and spectral properties of Be2MgnQ (Q = 0, −1; n = 2–11) clusters is performed. Based on the structural optimization, it is found that the Be2MgnQ (Q = 0, −1) clusters are shown by tetrahedral-based geometries at n = 2–6 and tower-like-based geometries at n = 7–11. The calculations of stability indicate that Be2Mg5Q=0, Be2Mg5Q=−1, and Be2Mg8Q=−1 clusters are “magic” clusters with high stability. The NCP shows that the charges are transferred from Mg atoms to Be atoms. The s- and p-orbitals interactions of Mg and Be atoms are main responsible for their NEC. In particular, chemical bond analysis including molecular orbitals (MOs) and chemical bonding composition for magic clusters to further study their stability. The results confirmed that the high stability of these clusters is due to the interactions between the Be atom and the Mg5 or Mg8 host. Finally, theoretical calculations of infrared and Raman spectra of the ground state of Be2MgnQ (Q = 0, −1; n = 1–11) clusters were performed, which will be absolutely useful for future experiments to identify these clusters.  相似文献   

2.
Additional Magnetic Examinations of Ti3?xMxO5-Phases (M = Al3+, Fe2+, Mn2+, Mg2+) with a Contribution about CrTi2O5 Ti3?xMxO5 was prepared with M = Al3+, Fe2+, Mn2+, and Mg2+. Die magnetic properties of this phases were examinated by the Faraday method in respect to the temperature. The well known magnetic effect of Ti3O5 near 450 K is shifted to lower degrees if Ti is replaced by Al, Fe, Mn, or Mg. Compared to Ti3?xVxO5 and Ti3?xCrxO5 the stability of the low temperature-form of Ti3O5 is much more reduced in Ti3?xMxO5 (M = Al, Fe, Mn, Mg). The crystal structure investigation of CrTi2O5 explained the anomalous behaviour of the Cr3+ and V3+ doped Ti3O5.  相似文献   

3.
Substitutional solid solutions Mg2+ ? Ni2+ of crystal hydrates Mg(1 ? x)Ni x NH4PO4 · 6H2O and Mg(1 ? x)Ni x NH4PO4 · H2O (where 0 < x ≤ 0.65), which have struvite structure and dittmarite structure, respectively, have been studied. Ion exchange Mg2+ ? Ni2+ influences the condition of M2+-H2O (M2+ = Mg2+, Ni2+) coordination bonds and hydrogen bonds involving coordinated H2O molecules, as probed by X-ray powder diffraction, thermal analysis, and FTIR spectroscopy. The coordination of water molecules to metal ions in those crystal hydrates is treated to be a factor that determines the propensity of the resulting crystal structures to polymorphism.  相似文献   

4.
The crystal structures among M1–M2–(H)‐arsenites (M1 = Li+, Na+, K+, Rb+, Cs+, Ca2+, Sr2+, Ba2+, Cd2+, Pb2+; M2 = Mg2+, Mn2+,3+, Fe2+,3+, Co2+, Ni2+, Cu2+, Zn2+) are less investigated. Up to now, only the structure of Pb3Mn(AsO3)2(AsO2OH) was described. The crystal structure of hydrothermally synthesized Na4Cd7(AsO3)6 was solved from the single‐crystal X‐ray diffraction data. Its trigonal crystal structure [space group R$\bar{3}$ , a = 9.5229(13), c = 19.258(4) Å, γ = 120°, V = 1512.5(5) Å3, Z = 3] represents a new structure type. The As atoms are arranged in monomeric (AsO3)3– units. The surroundings of the two crystallographically unique sodium atoms show trigonal antiprismatic coordination, and two mixed Cd/Na sites are remarkably unequal showing tetrahedral and octahedral coordinations. Despite the 3D connection of the AsO3 pyramids, (Cd,Na)Ox polyhedra and NaO6 antiprisms, a layer‐like arrangement of the Na atoms positioned in the hexagonal channels formed by CdO4 deformed tetrahedra and AsO3 pyramids in z = 0, 1/3, 2/3 is to be mentioned. These pseudo layers are interconnected to the 3D network by (Cd,Na)O6 octahedra. Raman spectra confirmed the presence of isolated AsO3 pyramids.  相似文献   

5.
王宏贾建峰  武海顺 《中国化学》2006,24(11):1509-1513
Using quantum chemistry methods B3LYP/6-31++G(d,p) to optimize endohedral complexes X@(HBNH)12 (X=Li^0/+, Na^0/+, K^0/+, Be^0/2+, Mg^0/2+, Ca^0/2+, H and He), the geometries with the lowest energy were achieved. Inclusion energy, standard equilibrium constant, natural charge, spin density, ionization potentials, and HOMO-LUMO energy gap were also discussed. The calculation predicted that X=Na^0/+, K^0/+, Mg^0/2+, Ca^0/2+, H and He are nearly located at the center of (HBNH)12 cluster. Li^+ lies in less than 0.021 nm departure from the center. Li and Be^0/2+ dramatically deviate from the center. (HBNH)12 prefers to enclose Li^+, Be^2+, Mg^2+, and Ca^2+ in it than others. Moreover, M@(HBNH)12 (M=Li, Na, K) species are "superalkalis" in that they possess lower first ionization potentials than the Cs atom (3.9 eV).  相似文献   

6.
The crystal structures of MgAl2–xGaxO4 (0 ≤ x ≤ 2) spinel solid solutions (x = 0.00, 0.38, 0.76, 0.96, 1.52, 2.00) were refined using 27Al MAS NMR measurements and single crystal X‐ray diffraction technique. Site preferences of cations were investigated. The inversion parameter (i) of MgAl2O4 (i = 0.206) is slightly larger than given in previous studies. It is considered that the difference of inversion parameter is caused by not only the difference of heat treatment time but also some influence of melting with a flux. The distribution of Ga3+ is little affected by a change of the temperature from 1473 K to 973 K. The degree of order‐disorder of Mg2+ or Al3+ between the fourfold‐ and sixfold‐coordinated sites is almost constant against Ga3+ content (x) in the solid solution. A compositional variable of the Ga/(Mg + Ga) ratio in the sixfold‐coordinated site has a constant value through the whole compositional range: the ratio is not influenced by the occupancy of Al3+. The occupancy of Al3+ is independent of the occupancy of Ga3+, though it depends on the occupancy of Mg2+ according to thermal history. The local bond lengths were estimated from the refined data of solid solutions. The local bond length between specific cation and oxygen corresponds with that expected from the effective ionic radii except local Al–O bond length in the fourfold‐coordinated site and local Mg–O bond length in the sixfold‐coordinated site. The local Al–O bond length in the fourfold‐coordinated site (1.92 Å) is about 0.15 Å longer than the expected bond length. This difference is induced by a difference in site symmetry of the fourfold‐coordinated site. The nature that Al3+ in spinel structure occupies mainly the sixfold‐coordinated site arises from the character of Al3+ itself. The local Mg–O bond length in the sixfold‐coordinated site (2.03 Å) is about 0.07 Å shorter than the expected one. Difference Fourier synthesis for MgGa2O4 shows a residual electron density peak of about 0.17 e/Å3 in height on the center of (Ga0.59 Mg0.41)–O bond. This peak indicates the covalent bonding nature of Ga–O bond on the sixfold‐coordinated site in the spinel structure.  相似文献   

7.
固体电解质Li9-nxMn+xN2Cl3(M=Na、Mg、Al)的合成及表征   总被引:3,自引:0,他引:3  
高温固相反应合成了固体电解质Li9-nxM^n+xN2Cl3(M=Na、Mg、Al)。利用粉末X射线衍射测定样品结构,测定了离子电导率,分解电压和电子电导。得出掺杂可以提高快离子快离子导体材料Li9N2Cl3中的Li^+离子可以很大程度的提高其电导率。  相似文献   

8.
In this work, we analyze the geometry and electronic structure of the [XnM3]n?2 species (M = Be, Mg, and Ca; X = Li, Na, and K; n = 0, 1, and 2), with special emphasis on the electron delocalization properties and aromaticity of the cyclo‐[M3]2? unit. The cyclo‐[M3]2? ring is held together through a three‐center two‐electron bond of σ‐character. Interestingly, the interaction of these small clusters with alkali metals stabilizes the cyclo‐[M3]2? ring and leads to a change from σ‐aromaticity in the bound state of the cyclo‐[M3]2? to π‐aromaticity in the XM3? and X2M3 metallic clusters. Our results also show that the aromaticity of the cyclo‐[M3]2? unit in the X2M3 metallic clusters depends on the nature of X and M. Moreover, we explored the possibility for tuning the aromaticity by simply moving X perpendicularly to the center of the M3 ring. The Na2Mg3, Li2Mg3, and X2Ca3 clusters undergo drastic aromaticity alterations when changing the distance from X to the center of the M3 ring, whereas X2Be3 and K2Mg3 keep its aromaticity relatively constant along this process. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   

9.
The three ligands 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis(methylenephosphonic acid) ( 1 ), 1,4,7,11-tetraazacyclotridecane-1,4,7,11-tetrakis(methylenephosphonic acid) ( 2 ), and 1,4,8,11-tetraazacyclotetradecane-1,4,8,1 1-tetrakis(methylenephosphonic acid) ( 3 ) have been synthesized by condensation of the corresponding macrocycles with formaldehyde and phosphorous acid. The protonation and stability constants with the earth-alkali ions have been determined at 25° and I = 0.1 M (Me4)N(NO3) by potentiometric titrations. Because of the high values of the first two protonation constants, 1H-NMR measurements were necessary to determine them. Titrations in different supporting electrolytes (NaNO3, KNO3, RbNO3, CsNO3, and Me4N(NO3)) show that their choice is of paramount importance, as the above ligands can form complexes with alkali-metal ions. The potentiometric results for the earth-alkali ions show that beside mononuclear complexes of different degrees of protonation ([MLHn], n = 0–4), also binuclear species are formed ([M2LHm], m = 0–2). It is interesting that 1 with the smallest macrocyclic ring has the greatest tendency to form binuclear complexes, which are so stable that they partially prevent the formation of the corresponding mononuclear species. For [ML], [MLH], [M2L], and [M2LH], the stability sequence is Mg2+ < Ca2+ > Sr2+ > Ba2+, whereas for [MLH2], [MLH3], and [MLH4], the stability steadily decreases from Mg2+ to Ba2+.  相似文献   

10.
The binary alloy phase ϵ‐Ag7+xMg26–x with x ≈ 1 and small amounts of the β′‐AgMg phase crystallize by annealing of Ag–Mg alloys with starting compositions between 24–28 At‐% Ag at 390 to 420 °C. A model structure for the ϵ‐phase consisting of a fcc packing of Mackay clusters was derived from the known structure of the ϵ′‐Ag17Mg54 phase. Crystals of the ϵ‐phase were obtained by direct melting of the elements and annealing. The examination of a single crystal yielded a face‐centered cubic unit cell, space group Fm3 with a = 1761.2(5) pm. The refinement was started with the parameters of the model: wR2(all) = 0.0925 for 1093 symmetrically independent reflections. A refinement of the occupancy parameters indicated a partial replacement of silver for magnesium at two metal atom sites, resulting in the final composition ϵ‐Ag7+xMg26–x with x = 0.96(2). There are 264 atoms in the unit cell and the calculated density is 3.568 gcm–3. The topology of the model was confirmed. Mackay icosahedra are located at the lattice points of a face‐centered cubic lattice. Differences between model and refined structure and their effects on the powder patterns are discussed. The new binary structure type of ϵ‐Ag7+xMg26–x can be described in terms of the I3‐cluster concept.  相似文献   

11.
A new phosphate, sodium calcium magnesium tetrakis(phosphate), Na8Ca1.5Mg12.5(PO4)12, has been synthesized by a flux method. Its novel structure consists of MgOx (x = 5 and 6) polyhedra and MO7 (M = Mg or Na) octahedra linked directly through common corners or edges to form a rigid three‐dimensional skeleton, reinforced by corner‐sharing between identical Mg12MO48 units. The connection of these units by the PO4 tetrahedra induces cavities and crossing tunnels where the Na+ and Ca2+ cations are located. This structural model was supported by a 31P NMR spectroscopy study which confirmed the existence of 12 crystallographically independent sites for the P atoms.  相似文献   

12.
Ba[Be2N2] was prepared as a yellow‐green microcrystalline powder by reaction of Ba2N with Be3N2 under nitrogen atmosphere. The crystal structure Rietfeld refinements (space group I4/mcm, a = 566.46(5) pm, c = 839.42(9) pm, Rint = 4.73 %, Rprof = 9.16 %) reveal the compound to crystallize as an isotype of the nitridoberyllates A[Be2N2] (A = Ca, Sr) consisting of planar 4.82 nets of mutually trigonal planar coordinated Be and N species. Averaged magnetic susceptibility values for the anion [(Be2N2)2?] determined from measurements on A[Be2N2] with A = Mg, Ca, Ba allow to derive a diamagnetic increment for N3? χdia = (?13±1stat.) · 10?6emu mol?1. Colorless Ba3[Be5O8] was first obtained as an oxidation product of Ba[Be2N2] in air. The crystal structure was solved and refined from single crystal X‐ray diffaction data (space group Pnma, a = 942.9(1) pm, b = 1163.47(7) pm, c = 742.1(1) pm, R1 = 2.99 %, wR2 = 7.15 %) and contains infinite rods of Be in trigonal planar, tetrahedral and 3 + 1 coordination by O. The crystal structure is discussed in context with other known oxoberyllates. Electronic structure calculations and electron localization function diagrams for both compounds support the classification as nitrido‐ and oxoberyllate, respectively.  相似文献   

13.
《Chemical physics letters》2002,350(3-4):267-273
The aromatic cation tropylium, C7H7+, predicted at the MP2/6-31G** level, is capable of binding with metal cations Be2+ or Mg2+, forming M2+–C7H7+ complexes. The obstacle for their binding is almost electrostatic repulsion, and the binding is from polarization and charge transfer. The orbital interaction between the M2+ and C7H7+ is mainly the s–π and p–π interactions. Interestingly, Be2+ is possible to pass through the ring of C7H7+, while Mg2+ is not. The intrinsic IR band of the M2+–C7H7+ complex is below 600 cm−1, which results from the vibration of the M2+ along the normal axis of C7H7+.  相似文献   

14.
Metal chelates [(C2H2X2)2M]n with ligating atoms X = NH, O, S and central atoms M = Be2+, Mg2+, Ni2+, Zn2+ (n = 0, ± 2), and M = Li+, Cu+ (n = ± 1, ?3), have been studied in our Laboratory for some years by ab initio calculations. In this article it is shown that certain features of the complexes are the same for all the different metals in our series. These features include a drastic reduction of the energy gap between unoccupied and occupied orbitals, when electrons are added to the positively charged complexes. This change of the energy gap is shown to be an effect of the ligand dimer [(C2H2X2)2]n. But this dimer can only exist when a positive ion, e.g., a metal ion, forms a bridge between the two monomers. The reduced energy gap implies a strong bathochromic shift of the electronic spectrum and low electrical resistivity.  相似文献   

15.
The stability constants of the 1 : 1 complexes formed between Mg2+ or Ca2+ and 5 Umpa2– or 6 Umpa2– were determined by potentiometric pH titrations in aqueous solution (25 °C; I = 0.1 M, NaNO3). Based on previously established log KMM(R‐PO3) versus pKHH(R‐PO3) straight‐line plots (M2+ = Mg2+ or Ca2+; R‐PO32– = simple phosphate monoester or phosphonate ligands where R is a non‐interacting residue), it is shown that the Mg(5 Umpa), Ca(5 Umpa), Mg(6 Umpa) and Ca(6 Umpa) complexes have the stability expected on the basis of the basicity of the phosphonate group in 5 Umpa2– and 6 Umpa2–. This means, these ligands may be considered as simple analogues of nucleotides, e. g. of uridine 5′‐monophosphate. In the higher pH range deprotonation of the uracil residue in the M(5 Umpa) and M(6 Umpa) complexes occurs and this leads to the negatively charged M(5 Umpa–H) and M(6 Umpa–H) species. Based on the comparison of various acidity constants it is shown that the M(5 Umpa) complexes are especially acidic; or to say it differently, the M(5 Umpa–H) species are especially stable. This increased stability is attributed to the formation of a seven‐membered chelate involving next to the phosphonate group also the carbonyl oxygen atom at C4 (after deprotonation of the (N3)H site). The formation degree of this chelated isomer reaches about 45% for the Mg(5 Umpa–H) and Ca(5 Umpa–H) species. No indication for chelate formation was observed for the M(6 Umpa–H) complexes.  相似文献   

16.
Energetic and structural properties of complexes formed from interaction between selenium analog of methimazole (MSeI) as an anti-thyroid drug and Mz+ (Li+, Na+, K+, Be2+, Mg2+ and Ca2+) cations have been investigated using B3LYP, M062X, PBE1PBE, and MP2 methods with 6-311++G(d,p) and 6-311++G(2d,2p) basis sets. Two planar and perpendicular complexes were predicted from interaction of MSeI and Mz+ cations. From the Gibbs free energy difference between the planar and perpendicular forms of MSeI–Mz+ complexes, it is found that the perpendicular forms are the predominant ones. In addition, the comparison of interaction energies shows that the order of energies increases in the following order: K+ < Na+ < Li+ < Ca2+ < Mg2+ < Be2+. The results of natural bond orbital analysis showed that the charge transfer occurs from MSeI to metal cations. The atom in molecule analysis shows that the charge density and its Laplacian at the Se–Mz+ bond critical point of the MSeI–M2+ complexes are greater than the MSeI–M1+ ones. Also, it was revealed that the Se–Mz+ interactions in perpendicular complexes of alkali and alkaline metal cations are electrostatic and partially covalent in nature, respectively.  相似文献   

17.
The compounds Yb1+xMg1—xGa4 (0 ≤ x ≤ 0.058) and YLiGa4 were synthesized by direct reaction of the elements in sealed niobium crucibles. The atomic arrangement of Yb1+xMg1—xGa4 (x = 0.058) represents a new structure type (space group Pm2, a = 4.3979(3)Å and c = 6.9671(7)Å) as evidenced by single crystal structure analysis and can be described as an ordered variant of CaIn2. YLiGa4 is isotypic to the ytterbium compound according to X‐ray Guinier powder data (a = 4.3168(1)Å and c = 6.8716(2)Å). Measurements of the magnetic susceptibility of both compounds reveal intrinsic diamagnetic behaviour, i.e., ytterbium in the 4f14 configuration for Yb1+xMg1—xGa4 (x = 0). From electrical resistivity data both compounds can be classified as metals. The compressibility of Yb1+xMg1—xGa4 (x = 0.058) as measured in diamond anvil cells by angle‐dispersive X‐ray diffraction is compatible with a valence change of the ytterbium atoms at high‐pressures and indicates a slight anisotropy which is in accordance with the structural organisation of the gallium network. X‐ray absorption spectra of the Yb LIII edge of Yb1+xMg1—xGa4 (x = 0.058) at pressures up to 25.0 GPa show a two‐peak structure which reveals the presence of Yb in the 4f14 and 4f13 states. The amount of ytterbium in the 4f13 state increases in two steps with progressing compression. The bonding analysis by means of the electron localization function reveals the Zintl‐like character of both compounds and confirms the 4f14 state for the majority of ytterbium atoms.  相似文献   

18.
The electronic, magnetic, and thermodynamic properties of alkali/alkaline earth metal ion-adsorbed gallium nitride nanocage (Ga5N10_NC) have been investigated using density functional theory. The results denote that alkali/alkaline earth-metal ion-adsorbed Ga5N10_NC systems are stable compounds, with the most stable adsorption site being the center of the cage ring. The partial density of states (PDOS) can estimate a certain charge assembly between Li+, Na+, K+/ Be2+, Mg2+, Ca2+ and Ga5N10_NC which indicate the complex dominant of metallic features as: Ca2+ > Mg2+ > Be2+ >> K+ > Na+ > Li+. For confirmation of magnetic-alignment of Ga5N10_NC, monovalent (M+) and divalent (M2+) metal ions were added to the sample to measure the effects of metals on the magnetic-alignment properties of Ga5N10_NC. Furthermore, the reported results of NMR spectroscopy have exhibited that both M+ and M2+ can be optimized to achieve optimal alignment of nanocage in the presence of an applied magnetic field; however, chemical shift anisotropy spans for Ca2+– and Mg2+–containing samples is due to Ca2+ and Mg2+ ions binding to Ga5N10_NC. Regarding IR spectroscopy, Li+@ Ga5N10_NC and Be2+@ Ga5N10_NC with more electronegativity appear the most fluctuations through adsorption process. Moreover, based on NQR analysis, Ca2+ has shown a different graph of electric potential during trapping in Ga5N10_NC compared to other metal cations. Based on the results of amounts in this research, the selectivity of metal ion adsorption by gallium nitride nanocage (ion sensor) has been approved as: K+>Na+> Li+ in alkali metals and Ca2+>Mg2+> Be2+ in alkaline earth metals.  相似文献   

19.
The nitridosilicate CaLu[Si4N7–2xCxOx] (x≈0.3) was synthesized by carbothermal reduction and nitridation starting from CaH2, Lu2O3, graphite and amorphous Si3N4 at 1550 °C in a radiofrequency furnace. CaLu[Si4N7–2xCxOx] (x≈0.3) crystallizes isotypically to many previously known MIIMIIISi4N7 compounds in the space group P63mc, as was confirmed by Rietveld refinement based on powder X-ray diffraction data. Incorporation of carbon into the crystal structure as a result of the carbothermal synthesis route was confirmed by 13C and 29Si MAS NMR spectroscopy. For the first time in the MIIMIIISi4N7 compound class, complementary EDX measurements suggest that simultaneous incorporation of oxygen compensates for the negative charge excess induced by carbon, resulting in an adjusted sum formula, CaLu[Si4N7–2xCxOx] (x≈0.3). When excited with UV-to-blue light, CaLu[Si4N7–2xCxOx] (x≈0.3) shows an emission maximum in the blue spectral region (λem=484 nm; fwhm=4531 cm−1) upon doping with Ce3+, whereas Eu2+-doped CaLu[Si4N7–2xCxOx] (x≈0.3) exhibits a yellow-green emission (λem=546 nm; fwhm=3999 cm−1).  相似文献   

20.
Cd2Cu(PO4)2     
During an investigation of the insufficiently known system M1O–M2O–X2O5–H2O (M1 = Cd2+, Sr2+ and Ba2+; M2 = Cu2+, Ni2+, Co2+, Zn2+ and Mg2+; X = P5+, As5+ and V5+), single crystals of the novel compound dicadmium copper(II) bis[phosphate(V)], Cd2Cu(PO4)2, were obtained. This compound belongs to a small group of compounds adopting a Cu3(PO4)2‐type structure and having the general formula M12M2(XO4)2 (M1/M2 = Cd2+, Cu2+, Mg2+ and Zn2+; X = As5+, P5+ and V5+). The crystal structure is characterized by the interconnection of infinite [Cu(PO4)2]n chains and [Cd2O10]n double chains, both extending along the a axis. Exceptional characteristics of this structure are its novel chemical composition and the occurrence of double chains of CdO6 polyhedra that were not found in related structures. In contrast to the isomorphous compounds, where the M1 cations are coordinated by five O atoms, the Cd atom is coordinated by six. The dissimilarity in the geometry of M1 coordination between Cd2Cu(PO4)2 and the isomorphous compounds is mostly due to the larger ionic radius of the Cd cation in comparison with the Cu, Mg and Zn cations. Sharing a common edge, two CdO6 polyhedra form Cd2O10 dimers. Each such dimer is bonded to another dimer sharing common vertices, forming [Cd2O10]n double chains in the [100] direction. The Cu atoms, located on an inversion centre (site symmetry ), form isolated CuO4 squares interconnected by PO4 tetrahedra, forming [Cu(PO4)2]n chains similar to those found in related structures. Conversely, the [Cd2O10]n double chains, which were not found in related structures, are an exclusive feature of this structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号