首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
We construct a stochastic maximum principle (SMP) which provides necessary conditions for the existence of Nash equilibria in a certain form of N-agent stochastic differential game (SDG) of a mean-field type. The information structure considered for the SDG is of a possible asymmetric and partial type. To prove our SMP we take an approach based on spike-variations and adjoint representation techniques, analogous to that of S.?Peng (SIAM J. Control Optim. 28(4):966?C979, 1990) in the optimal stochastic control context. In our proof we apply adjoint representation procedures at three points. The first-order adjoint processes are defined as solutions to certain mean-field backward stochastic differential equations, and second-order adjoint processes of a first type are defined as solutions to certain backward stochastic differential equations. Second-order adjoint processes of a second type are defined as solutions of certain backward stochastic equations of a type that we introduce in this paper, and which we term conditional mean-field backward stochastic differential equations. From the resulting representations, we show that the terms relating to these second-order adjoint processes of the second type are of an order such that they do not appear in our final SMP equations. A?comparable situation exists in an article by R.?Buckdahn, B.?Djehiche, and J.?Li (Appl. Math. Optim. 64(2):197?C216, 2011) that constructs a SMP for a mean-field type optimal stochastic control problem; however, the approach we take of using these second-order adjoint processes of a second type to deal with the type of terms that we refer to as the second form of quadratic-type terms represents an alternative to a development, to our setting, of the approach used in their article for their analogous type of term.  相似文献   

2.
This paper is concerned with numerical simulations for the GBrownian motion (defined by S. Peng in Stochastic Analysis and Applications, 2007, 541–567). By the definition of the G-normal distribution, we first show that the G-Brownian motions can be simulated by solving a certain kind of Hamilton-Jacobi-Bellman (HJB) equations. Then, some finite difference methods are designed for the corresponding HJB equations. Numerical simulation results of the G-normal distribution, the G-Brownian motion, and the corresponding quadratic variation process are provided, which characterize basic properties of the G-Brownian motion. We believe that the algorithms in this work serve as a fundamental tool for future studies, e.g., for solving stochastic differential equations (SDEs)/stochastic partial differential equations (SPDEs) driven by the G-Brownian motions.  相似文献   

3.
The paper deals with the problem of finding the field of force that generates a given (N ? 1)-parametric family of orbits for a mechanical system with N degrees of freedom. This problem is usually referred to as the inverse problem of dynamics. We study this problem in relation to the problems of celestial mechanics. We state and solve a generalization of the Dainelli and Joukovski problem and propose a new approach to solve the inverse Suslov’s problem. We apply the obtained results to generalize the theorem enunciated by Joukovski in 1890, solve the inverse Stäckel problem and solve the problem of constructing the potential-energy function U that is capable of generating a bi-parametric family of orbits for a particle in space. We determine the equations for the sought-for function U and show that on the basis of these equations we can define a system of two linear partial differential equations with respect to U which contains as a particular case the Szebehely equation. We solve completely a special case of the inverse dynamics problem of constructing U that generates a given family of conics known as Bertrand’s problem. At the end we establish the relation between Bertrand’s problem and the solutions to the Heun differential equation. We illustrate our results by several examples.  相似文献   

4.
作者研究了一个条件平均场随机微分方程的最优控制问题.这种方程和某些部分信息下的随机最优控制问题有关,并且可以看做是平均场随机微分方程的推广.作者以庞特里雅金最大值原理的形式给出最优控制满足的必要和充分条件.此外,文中给出一个线性二次最优控制问题来说明理论结果的应用.  相似文献   

5.
In this paper, we study the following stochastic Hamiltonian system in ?2d (a second order stochastic differential equation):
$$d{\dot X_t} = b({X_t},{\dot X_t})dt + \sigma ({X_t},{\dot X_t})d{W_t},({X_0},{\dot X_0}) = (x,v) \in \mathbb{R}^{2d},$$
where b(x; v) : ?2d → ?d and σ(x; v): ?2d → ?d ? ?d are two Borel measurable functions. We show that if σ is bounded and uniformly non-degenerate, and bH p 2/3,0 and ?σLp for some p > 2(2d+1), where H p α, β is the Bessel potential space with differentiability indices α in x and β in v, then the above stochastic equation admits a unique strong solution so that (x, v) ? Zt(x, v) := (Xt, ?t)(x, v) forms a stochastic homeomorphism flow, and (x, v) ? Zt(x, v) is weakly differentiable with ess.supx, v E(supt∈[0, T] |?Zt(x, v)|q) < ∞ for all q ? 1 and T ? 0. Moreover, we also show the uniqueness of probability measure-valued solutions for kinetic Fokker-Planck equations with rough coefficients by showing the well-posedness of the associated martingale problem and using the superposition principle established by Figalli (2008) and Trevisan (2016).
  相似文献   

6.
This work develops asymptotic expansions of systems of partial differential equations associated with multi-scale switching diffusions. The switching process is modeled by using an inhomogeneous continuous-time Markov chain. In the model, there are two small parameters ε and δ. The first one highlights the fast switching, whereas the other delineates the slow diffusion. Assuming that ε and δ are related in that ε = δ γ , our results reveal that different values of γ lead to different behaviors of the underlying systems, resulting in different asymptotic expansions. Although our motivation comes from stochastic problems, the approach is mainly analytic and is constructive. The asymptotic series are rigorously justified with error bounds provided. An example is provided to demonstrate the results.  相似文献   

7.
We obtain conditions for the existence and uniqueness of an optimal control for the linear nonstationary operator-differential equation
$\frac{d}{{dt}}[A(t)y(t)] + B(t)y(t) = K(t)u(t) + f(t)$
with a quadratic performance criterion. The operators A(t) and B(t) are closed and may have nontrivial kernels. The results are applied to differential-algebraic equations and to partial differential equations that do not belong to the Cauchy-Kowalewskaya type.
  相似文献   

8.
The main object of study is the stochastic Cauchy problem for a quasilinear equation with random disturbances in the form of a Hilbert-valued white noise process and with an operator generating an integrated semigroup in the space L2(R). We use the Colombeau theory of multiplication of distributions to introduce an abstract stochastic factor algebra and construct an approximate solution of the problem in this algebra.  相似文献   

9.
In this paper we consider infinite horizon backward doubly stochastic differential equations (BDSDEs for short) coupled with forward stochastic differential equations, whose terminal functions are non-degenerate. For such kind of BDSDEs, we study the existence and uniqueness of their solutions taking values in weighted L p (dx)?L 2(dx) space (p ≥ 2), and obtain the stationary property for the solutions.  相似文献   

10.
This paper is mainly concerned with the solutions to both forward and backward mean-field stochastic partial differential equation and the corresponding optimal control problem for mean-field stochastic partial differential equation. The authors first prove the continuous dependence theorems of forward and backward mean-field stochastic partial differential equations and show the existence and uniqueness of solutions to them. Then they establish necessary and sufficient optimality conditions of the control problem in the form of Pontryagin''s maximum principles. To illustrate the theoretical results, the authors apply stochastic maximum principles to study the infinite-dimensional linear-quadratic control problem of mean-field type. Further, an application to a Cauchy problem for a controlled stochastic linear PDE of mean-field type is studied.  相似文献   

11.
A time-constrained capital-budgeting problem arises when projects, which can contribute to achieving a desired target state before a specified deadline, arrive sequentially. We model such problems by treating projects as randomly arriving requests, each with a funding cost, a proposed benefit, and a known probability of success. The problem is to allocate a non-renewable initial budget to projects over time so as to maximise the expected benefit obtained by a certain time, T, called the deadline, where T can be either a constant or a random variable. Each project must be accepted or rejected as soon as it arrives. We developed a stochastic dynamic programming formulation and solution of this problem, showing that the optimal strategy is to dynamically determine ‘acceptance intervals’ such that a project of type i is accepted when, and only when, it arrives during an acceptance interval for projects of type i.  相似文献   

12.
We consider a stochastic optimal control problem in a market model with temporary and permanent price impact, which is related to an expected utility maximization problem under finite fuel constraint. We establish the initial condition fulfilled by the corresponding value function and show its first regularity property. Moreover, we can prove the existence and uniqueness of an optimal strategy under rather mild model assumptions. This will then allow us to derive further regularity properties of the corresponding value function, in particular its continuity and partial differentiability. As a consequence of the continuity of the value function, we will prove a dynamic programming principle without appealing to the classical measurable selection arguments. This permits us to establish a tight relation between our value function and a nonlinear parabolic degenerated Hamilton–Jacobi–Bellman (HJB) equation with singularity. To conclude, we show a comparison principle, which allows us to characterize our value function as the unique viscosity solution of the HJB equation.  相似文献   

13.
14.
We construct p-adic Euclidean random fields \(\varvec{\Phi }\) over \(\mathbb {Q}_{p}^{N}\), for arbitrary N, these fields are solutions of p-adic stochastic pseudodifferential equations. From a mathematical perspective, the Euclidean fields are generalized stochastic processes parametrized by functions belonging to a nuclear countably Hilbert space, these spaces are introduced in this article, in addition, the Euclidean fields are invariant under the action of certain group of transformations. We also study the Schwinger functions of \(\varvec{\Phi }\).  相似文献   

15.
We consider the numerical solution of the generalized Lyapunov and Stein equations in \(\mathbb {R}^{n}\), arising respectively from stochastic optimal control in continuous- and discrete-time. Generalizing the Smith method, our algorithms converge quadratically and have an O(n3) computational complexity per iteration and an O(n2) memory requirement. For large-scale problems, when the relevant matrix operators are “sparse”, our algorithm for generalized Stein (or Lyapunov) equations may achieve the complexity and memory requirement of O(n) (or similar to that of the solution of the linear systems associated with the sparse matrix operators). These efficient algorithms can be applied to Newton’s method for the solution of the rational Riccati equations. This contrasts favourably with the naive Newton algorithms of O(n6) complexity or the slower modified Newton’s methods of O(n3) complexity. The convergence and error analysis will be considered and numerical examples provided.  相似文献   

16.
We consider the H 2/H -optimal control problem for a dynamical system defined by a linear stochastic Itô equation whose drift and diffusion coefficients linearly depend on the state vector, the control signal, and the external disturbance. The optimization is carried out under the a priori requirement of maximum possible damping of the harmful influence of external disturbances on the system operation. We present theorems on the solvability of matrix Riccati differential equations to which the original optimization problem is reduced.  相似文献   

17.
Global well-posedness of the initial-boundary value problem for the stochastic generalized Kuramoto- Sivashinsky equation in a bounded domain D with a multiplicative noise is studied. It is shown that under suitable sufficient conditions, for any initial data u0L2(D × Ω), this problem has a unique global solution u in the space L2(Ω, C([0, T], L2(D))) for any T >0, and the solution map u0 ? u is Lipschitz continuous.  相似文献   

18.
We are concerned with a class of neutral stochastic partial differential equations driven by Rosenblatt process in a Hilbert space. By combining some stochastic analysis techniques, tools from semigroup theory, and stochastic integral inequalities, we identify the global attracting sets of this kind of equations. Especially, some sufficient conditions ensuring the exponent p-stability of mild solutions to the stochastic systems under investigation are obtained. Last, an example is given to illustrate the theory in the work.  相似文献   

19.
We develop a previously proposed algebraic technique for a Hamiltonian approach to evolution systems of partial differential equations including constrained systems and propose a defining system of equations (suitable for computer calculations) characterizing the Hamiltonian operators of a given form. We demonstrate the technique with a simple example.  相似文献   

20.
A point classification of ordinary differential equations of the form y″ = F(x, y) is considered. The algebra of differential invariants of the action of the point symmetry pseudogroup on the right-hand sides of equations of the form y″ = F(x, y) is calculated, and Lie’s problem on the point equivalence of such equations is solved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号