首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.

In this study, we consider two classes of multicriteria two-stage stochastic programs in finite probability spaces with multivariate risk constraints. The first-stage problem features multivariate stochastic benchmarking constraints based on a vector-valued random variable representing multiple and possibly conflicting stochastic performance measures associated with the second-stage decisions. In particular, the aim is to ensure that the decision-based random outcome vector of interest is preferable to a specified benchmark with respect to the multivariate polyhedral conditional value-at-risk or a multivariate stochastic order relation. In this case, the classical decomposition methods cannot be used directly due to the complicating multivariate stochastic benchmarking constraints. We propose an exact unified decomposition framework for solving these two classes of optimization problems and show its finite convergence. We apply the proposed approach to a stochastic network design problem in the context of pre-disaster humanitarian logistics and conduct a computational study concerning the threat of hurricanes in the Southeastern part of the United States. The numerical results provide practical insights about our modeling approach and show that the proposed algorithm is computationally scalable.

  相似文献   

2.
《Optimization》2012,61(9):1719-1747
ABSTRACT

By utilizing a min-biaffine scalarization function, we define the multivariate robust second-order stochastic dominance relationship to flexibly compare two random vectors. We discuss the basic properties of the multivariate robust second-order stochastic dominance and relate it to the nonpositiveness of a functional which is continuous and subdifferentiable everywhere. We study a stochastic optimization problem with multivariate robust second-order stochastic dominance constraints and develop the necessary and sufficient conditions of optimality in the convex case. After specifying an ambiguity set based on moments information, we approximate the ambiguity set by a series of sets consisting of discrete distributions. Furthermore, we design a convex approximation to the proposed stochastic optimization problem with multivariate robust second-order stochastic dominance constraints and establish its qualitative stability under Kantorovich metric and pseudo metric, respectively. All these results lay a theoretical foundation for the modelling and solution of complex stochastic decision-making problems with multivariate robust second-order stochastic dominance constraints.  相似文献   

3.
Stochastic dominance relations are well studied in statistics, decision theory and economics. Recently, there has been significant interest in introducing dominance relations into stochastic optimization problems as constraints. In the discrete case, stochastic optimization models involving second order stochastic dominance constraints can be solved by linear programming. However, problems involving first order stochastic dominance constraints are potentially hard due to the non-convexity of the associated feasible regions. In this paper we consider a mixed 0–1 linear programming formulation of a discrete first order constrained optimization model and present a relaxation based on second order constraints. We derive some valid inequalities and restrictions by employing the probabilistic structure of the problem. We also generate cuts that are valid inequalities for the disjunctive relaxations arising from the underlying combinatorial structure of the problem by applying the lift-and-project procedure. We describe three heuristic algorithms to construct feasible solutions, based on conditional second order constraints, variable fixing, and conditional value at risk. Finally, we present numerical results for several instances of a real world portfolio optimization problem. This research was supported by the NSF awards DMS-0603728 and DMI-0354678.  相似文献   

4.
We introduce a new preference relation in the space of random variables, which we call robust stochastic dominance. We consider stochastic optimization problems where risk-aversion is expressed by a robust stochastic dominance constraint. These are composite semi-infinite optimization problems with constraints on compositions of measures of risk and utility functions. We develop necessary and sufficient conditions of optimality for such optimization problems in the convex case. In the nonconvex case, we derive necessary conditions of optimality under additional smoothness assumptions of some mappings involved in the problem.  相似文献   

5.
本文主要考虑一类经典的含有二阶随机占优约束的投资组合优化问题,其目标为最大化期望收益,同时利用二阶随机占优约束度量风险,满足期望收益二阶随机占优预定的参考目标收益。与传统的二阶随机占优投资组合优化模型不同,本文考虑不确定的投资收益率,并未知其精确的概率分布,但属于某一不确定集合,建立鲁棒二阶随机占优投资组合优化模型,借助鲁棒优化理论,推导出对应的鲁棒等价问题。最后,采用S&P 500股票市场的实际数据,对模型进行不同训练样本规模和不确定集合下的最优投资组合的权重、样本内和样本外不确定参数对期望收益的影响的分析。结果表明,投资收益率在最新的历史数据规模下得出的投资策略,能够获得较高的样本外期望收益,对未来投资更具参考意义。在保证样本内解的最优性的同时,也能取得较高的样本外期望收益和随机占优约束被满足的可行性。  相似文献   

6.
Solutions of portfolio optimization problems are often influenced by a model misspecification or by errors due to approximation, estimation and incomplete information. The obtained results, recommendations for the risk and portfolio manager, should be then carefully analyzed. We shall deal with output analysis and stress testing with respect to uncertainty or perturbations of input data for static risk constrained portfolio optimization problems by means of the contamination technique. Dependence of the set of feasible solutions on the probability distribution rules out the straightforward construction of convexity-based global contamination bounds. Results obtained in our paper [Dupa?ová, J., & Kopa, M. (2012). Robustness in stochastic programs with risk constraints. Annals of Operations Research, 200, 55–74.] were derived for the risk and second order stochastic dominance constraints under suitable smoothness and/or convexity assumptions that are fulfilled, e.g. for the Markowitz mean–variance model. In this paper we relax these assumptions having in mind the first order stochastic dominance and probabilistic risk constraints. Local bounds for problems of a special structure are obtained. Under suitable conditions on the structure of the problem and for discrete distributions we shall exploit the contamination technique to derive a new robust first order stochastic dominance portfolio efficiency test.  相似文献   

7.
In this paper we study optimization problems with multivariate stochastic dominance constraints where the underlying functions are not necessarily linear. These problems are important in multicriterion decision making, since each component of vectors can be interpreted as the uncertain outcome of a given criterion. We propose a penalization scheme for the multivariate second order stochastic dominance constraints. We solve the penalized problem by the level function methods, and a modified cutting plane method and compare them to the cutting surface method proposed in the literature. The proposed numerical schemes are applied to a generic budget allocation problem and a real world portfolio optimization problem.  相似文献   

8.
Computational Management Science - In this article we focus on multistage portfolio optimization problem with usage of multivariate stochastic dominance constraints. The first part of the work is...  相似文献   

9.
We introduce stochastic integer programs with second-order dominance constraints induced by mixed-integer linear recourse. Closedness of the constraint set mapping with respect to perturbations of the underlying probability measure is derived. For discrete probability measures, large-scale, block-structured, mixed- integer linear programming equivalents to the dominance constrained stochastic programs are identified. For these models, a decomposition algorithm is proposed and tested with instances from power optimization.  相似文献   

10.
In this paper we present a stability analysis of a stochastic optimization problem with stochastic second order dominance constraints. We consider a perturbation of the underlying probability measure in the space of regular measures equipped with pseudometric discrepancy distance (Römisch in Stochastic Programming. Elsevier, Amsterdam, pp 483–554, 2003). By exploiting a result on error bounds in semi-infinite programming due to Gugat (Math Program Ser B 88:255–275, 2000), we show under the Slater constraint qualification that the optimal value function is Lipschitz continuous and the optimal solution set mapping is upper semicontinuous with respect to the perturbation of the probability measure. In particular, we consider the case when the probability measure is approximated by an empirical probability measure and show an exponential rate of convergence of the sequence of optimal solutions obtained from solving the approximation problem. The analysis is extended to the stationary points.  相似文献   

11.
Optimization problems with constraints involving stochastic parameters that are required to be satisfied with a prespecified probability threshold arise in numerous applications. Such chance constrained optimization problems involve the dual challenges of stochasticity and nonconvexity. In the setting of a finite distribution of the stochastic parameters, an optimization problem with linear chance constraints can be formulated as a mixed integer linear program (MILP). The natural MILP formulation has a weak relaxation bound and is quite difficult to solve. In this paper, we review some recent results on improving the relaxation bounds and constructing approximate solutions for MILP formulations of chance constraints. We also discuss a recently introduced bicriteria approximation algorithm for covering type chance constrained problems. This algorithm uses a relaxation to construct a solution whose (constraint violation) risk level may be larger than the pre-specified threshold, but is within a constant factor of it, and whose objective value is also within a constant factor of the true optimal value. Finally, we present some new results that improve on the bicriteria approximation factors in the finite scenario setting and shed light on the effect of strong relaxations on the approximation ratios.  相似文献   

12.
We consider a parametric stochastic quasi-variational inequality problem (SQVIP for short) where the underlying normal cone is defined over the solution set of a parametric stochastic cone system. We investigate the impact of variation of the probability measure and the parameter on the solution of the SQVIP. By reformulating the SQVIP as a natural equation and treating the orthogonal projection over the solution set of the parametric stochastic cone system as an optimization problem, we effectively convert stability of the SQVIP into that of a one stage stochastic program with stochastic cone constraints. Under some moderate conditions, we derive Hölder outer semicontinuity and continuity of the solution set against the variation of the probability measure and the parameter. The stability results are applied to a mathematical program with stochastic semidefinite constraints and a mathematical program with SQVIP constraints.  相似文献   

13.
14.
Sur  Arnab  Birge  John R. 《Mathematical Programming》2022,191(1):281-306

In this article we study the consistency of optimal and stationary (KKT) points of a stochastic non-linear optimization problem involving expectation functionals, when the underlying probability distribution associated with the random variable is weakly approximated by a sequence of random probability measures. The optimization model includes constraints with expectation functionals those are not captured in direct application of the previous results on optimality conditions exist in the literature. We first study the consistency of stationary points of a general NLP problem with convex and locally Lipschitz data and then apply those results to the stochastic NLP problem and stochastic minimax problem. Moreover, we derive an exponential bound for such approximations using a large deviation principle.

  相似文献   

15.
We consider stochastic optimization problems where risk-aversion is expressed by a stochastic ordering constraint. The constraint requires that a random vector depending on our decisions stochastically dominates a given benchmark random vector. We identify a suitable multivariate stochastic order and describe its generator in terms of von Neumann–Morgenstern utility functions. We develop necessary and sufficient conditions of optimality and duality relations for optimization problems with this constraint. Assuming convexity we show that the Lagrange multipliers corresponding to dominance constraints are elements of the generator of this order, thus refining and generalizing earlier results for optimization under univariate stochastic dominance constraints. Furthermore, we obtain necessary conditions of optimality for non-convex problems under additional smoothness assumptions.  相似文献   

16.
Supian Sudradjat  Vasile Preda 《PAMM》2007,7(1):2060075-2060075
We consider stochastic optimization problems involving stochastic dominance constraints. We develop portfolio optimization model involving stochastic dominance constrains using fuzzy decisions and we concentrate on fuzzy linear programming problems with only fuzzy technological coefficients and aplication/implementation of modified subgradient method to fuzy linear programming problems. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Summary In a separable metric space, if two Borel probability measures (laws) are nearby in a suitable metric, then there exist random variables with those laws which are nearby in probability. Specifically, by a well-known theorem of Strassen, the Prohorov distance between two laws is the infimum of Ky Fan distances of random variables with those laws. The present paper considers possible extensions of Strassen's theorem to two random elements one of which may be (compact) set-valued and/or non-measurable. There are positive results in finite-dimensional spaces, but with factors depending on the dimension. Examples show that such factors cannot entirely be avoided, so that the extension of Strassen's theorem to the present situation fails in infinite dimensions.This research was partially supported by a Guggenheim Fellowship, by National Science Foundation grant DMS 8505550 at MSRI-Berkeley, and other NSF grants  相似文献   

18.
Inspired by the successful applications of the stochastic optimization with second order stochastic dominance (SSD) model in portfolio optimization, we study new numerical methods for a general SSD model where the underlying functions are not necessarily linear. Specifically, we penalize the SSD constraints to the objective under Slater’s constraint qualification and then apply the well known stochastic approximation (SA) method and the level function method to solve the penalized problem. Both methods are iterative: the former requires to calculate an approximate subgradient of the objective function of the penalized problem at each iterate while the latter requires to calculate a subgradient. Under some moderate conditions, we show that w.p.1 the sequence of approximated solutions generated by the SA method converges to an optimal solution of the true problem. As for the level function method, the convergence is deterministic and in some cases we are able to estimate the number of iterations for a given precision. Both methods are applied to portfolio optimization problem where the return functions are not necessarily linear and some numerical test results are reported.  相似文献   

19.
We consider optimization problems with second order stochastic dominance constraints formulated as a relation of Lorenz curves. We characterize the relation in terms of rank dependent utility functions, which generalize Yaari's utility functions. We develop optimality conditions and duality theory for problems with Lorenz dominance constraints. We prove that Lagrange multipliers associated with these constraints can be identified with rank dependent utility functions. The problem is numerically tractable in the case of discrete distributions with equally probable realizations. Research supported by the NSF awards DMS-0303545, DMS-0303728, DMI-0354500 and DMI-0354678.  相似文献   

20.
We prove some results regarding tight probability measures on real Frechet spaces and countable strict inductive limits of these spaces. These results are applied to Gaussian measures and to construct a Brownian motion on such spaces. We then prove the log log law of Strassen for this Brownian motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号