首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Linear recurring sequences over finite fields play an important role in coding theory and cryptography. It is known that subfield subcodes of linear codes yield some good codes. In this paper, we study linear recurring sequences and subfield subcodes. Let Mqm(f(x)) denote the set of all linear recurring sequences over Fqm with characteristic polynomial f(x) over Fqm . Denote the restriction of Mqm(f(x)) to sequences over Fq and the set after applying trace function to each sequence in Mqm(f(x)) by Mqm(f(x)) | Fq and Tr( Mqm(f(x))), respectively. It is shown that these two sets are both complete sets of linear recurring sequences over Fq with some characteristic polynomials over Fq. In this paper, we firstly determine the characteristic polynomials for these two sets. Then, using these results, we determine the generator polynomials of subfield subcodes and trace codes of cyclic codes over Fqm .  相似文献   

2.
In this paper we deal with local estimates for parabolic problems in ${\mathbb{R}^N}$ with absorbing first order terms, whose model is $$\left\{\begin{array}{l@{\quad}l}u_t- \Delta u +u |\nabla u|^q = f(t,x) \quad &{\rm in}\, (0,T) \times \mathbb{R}^N\,,\\u(0,x)= u_0 (x) &{\rm in}\, \mathbb{R}^N \,,\quad\end{array}\right.$$ where ${T >0 , \, N\geq 2,\, 1 < q \leq 2,\, f(t,x)\in L^1\left( 0,T; L^1_{\rm loc} \left(\mathbb{R}^N\right)\right)}$ and ${u_0\in L^1_{\rm loc}\left(\mathbb{R}^{N}\right)}$ .  相似文献   

3.
Let KL 1(?) and let fL (?) be two functions on ?. The convolution $$ \left( {K*F} \right)\left( x \right) = \int_\mathbb{R} {K\left( {x - y} \right)f\left( y \right)dy} $$ can be considered as an average of f with weight defined by K. Wiener’s Tauberian theorem says that under suitable conditions, if $$ \mathop {\lim }\limits_{x \to \infty } \left( {K*F} \right)\left( x \right) = \mathop {\lim }\limits_{x \to \infty } \int_\mathbb{R} {\left( {K*A} \right)\left( x \right)} $$ for some constant A, then $$ \mathop {\lim }\limits_{x \to \infty } f\left( x \right) = A $$ We prove the following ?-adic analogue of this theorem: Suppose K, F, G are perverse ?-adic sheaves on the affine line $ \mathbb{A} $ over an algebraically closed field of characteristic p (p ≠ ?). Under suitable conditions, if $ \left( {K*F} \right)|_{\eta _\infty } \cong \left( {K*G} \right)|_{\eta _\infty } $ , then $ F|_{\eta _\infty } \cong G|_{\eta _\infty } $ , where η is the spectrum of the local field of $ \mathbb{A} $ at .  相似文献   

4.
Let $d$ be a given positive integer and let $\{R_j\}_{j=1}^d$ denote the collection of Riesz transforms on $\mathbb {R}^d$ . For $1<p<\infty $ , we determine the best constant $C_p$ such that the following holds. For any locally integrable function $f$ on $\mathbb {R}^d$ and any $j\in \{1,\,2,\,\ldots ,\,d\}$ , $$\begin{aligned} ||(R_jf)_+||_{L^{p,\infty }(\mathbb {R}^d)}\le C_p||f||_{L^{p,\infty }(\mathbb {R}^d)}. \end{aligned}$$ A related statement for Riesz transforms on spheres is also established. The proofs exploit Gundy–Varopoulos representation of Riesz transforms and appropriate inequality for orthogonal martingales.  相似文献   

5.
We prove a new local inequality for divisors on surfaces and utilize it to compute α-invariants of singular del Pezzo surfaces, which implies that del Pezzo surfaces of degree one whose singular points are of type $\mathbb{A}_{1}$ , $\mathbb{A}_{2}$ , $\mathbb{A}_{3}$ , $\mathbb{A}_{4}$ , $\mathbb{A}_{5}$ , or $\mathbb{A}_{6}$ are Kähler-Einstein.  相似文献   

6.
Let $\mathbb{K}$ be a finite extension of a characteristic zero field $\mathbb{F}$ . We say that a pair of n × n matrices (A,B) over $\mathbb{F}$ represents $\mathbb{K}$ if $\mathbb{K} \cong {{\mathbb{F}\left[ A \right]} \mathord{\left/ {\vphantom {{\mathbb{F}\left[ A \right]} {\left\langle B \right\rangle }}} \right. \kern-0em} {\left\langle B \right\rangle }}$ , where $\mathbb{F}\left[ A \right]$ denotes the subalgebra of $\mathbb{M}_n \left( \mathbb{F} \right)$ containing A and 〈B〉 is an ideal in $\mathbb{F}\left[ A \right]$ , generated by B. In particular, A is said to represent the field $\mathbb{K}$ if there exists an irreducible polynomial $q\left( x \right) \in \mathbb{F}\left[ x \right]$ which divides the minimal polynomial of A and $\mathbb{K} \cong {{\mathbb{F}\left[ A \right]} \mathord{\left/ {\vphantom {{\mathbb{F}\left[ A \right]} {\left\langle {q\left( A \right)} \right\rangle }}} \right. \kern-0em} {\left\langle {q\left( A \right)} \right\rangle }}$ . In this paper, we identify the smallest order circulant matrix representation for any subfield of a cyclotomic field. Furthermore, if p is a prime and $\mathbb{K}$ is a subfield of the p-th cyclotomic field, then we obtain a zero-one circulant matrix A of size p × p such that (A, J) represents $\mathbb{K}$ , where J is the matrix with all entries 1. In case, the integer n has at most two distinct prime factors, we find the smallest order 0, 1-companion matrix that represents the n-th cyclotomic field. We also find bounds on the size of such companion matrices when n has more than two prime factors.  相似文献   

7.
A function ${u : X \to \mathbb{R}}$ defined on a partially ordered set is quasi-Leontief if, for all ${x \in X}$ , the upper level set ${\{x\prime \in X : u(x\prime) \geq u(x)\}}$ has a smallest element; such an element is an efficient point of u. An abstract game ${u_{i} : \prod^{n}_{j=1} X_j \to \mathbb{R}, i \in \{1, \ldots , n\}}$ , is a quasi-Leontief game if, for all i and all ${(x_{j})_{j \neq i} \in \prod_{j \neq i} X_{j}, u_{i}((x_{j})_{j \neq i};-) : X_{i} \to \mathbb{R}}$ is quasi-Leontief; a Nash equilibrium x* of an abstract game ${u_{i} :\prod^{n}_{j=1} X_{j} \to \mathbb{R}}$ is efficient if, for all ${i, x^{*}_{i}}$ is an efficient point of the partial function ${u_{i}((x^{*}_{j})_{j \neq i};-) : X_{i} \to \mathbb{R}}$ . We establish the existence of efficient Nash equilibria when the strategy spaces X i are topological semilattices which are Peano continua and Lawson semilattices.  相似文献   

8.
Let ${\mathbf{T}=\{T(t)\} _{t\in\mathbb{R}}}$ be a ??(X, F)-continuous group of isometries on a Banach space X with generator A, where ??(X, F) is an appropriate local convex topology on X induced by functionals from ${ F\subset X^{\ast}}$ . Let ?? A (x) be the local spectrum of A at ${x\in X}$ and ${r_{A}(x):=\sup\{\vert\lambda\vert :\lambda \in \sigma_{A}(x)\},}$ the local spectral radius of A at x. It is shown that for every ${x\in X}$ and ${\tau\in\mathbb{R},}$ $$\left\Vert T(\tau) x-x\right\Vert \leq \left\vert \tau \right\vert r_{A}(x)\left\Vert x\right\Vert.$$ Moreover if ${0\leq \tau r_{A}(x)\leq \frac{\pi}{2},}$ then it holds that $$\left\Vert T(\tau) x-T(-\tau)x\right\Vert \leq 2\sin \left(\tau r_{A}(x)\right)\left\Vert x\right\Vert.$$ Asymptotic versions of these results for C 0-semigroup of contractions are also obtained. If ${\mathbf{T}=\{T(t)\}_{t\geq 0}}$ is a C 0-semigroup of contractions, then for every ${x\in X}$ and ????? 0, $$\underset{t\rightarrow \infty }{\lim } \left\Vert T( t+\tau) x-T(t) x\right\Vert\leq\tau\sup\left\{ \left\vert \lambda \right\vert :\lambda \in\sigma_{A}(x)\cap i \mathbb{R} \right\} \left\Vert x\right\Vert. $$ Several applications are given.  相似文献   

9.
We study the L p boundedness of the generalized Bochner–Riesz means S λ which are defined as $$S^{\lambda}f(x) = \mathcal{F}^{-1} \left[\left(1 - \rho \right)_{+}^{\lambda} \widehat{f} \right](x)$$ where ${\rho(\xi) = {\rm max}\{|\xi_{1}|, \ldots, |\xi_{\ell}|\}}$ for ${\xi = (\xi_{1},\ldots, \xi_{\ell}) \in \mathbb{R}^{{d}_{1}} \times \cdots \times \mathbb{R}^{{d}_{\ell}}}$ and ${\mathcal{F}^{-1}}$ is the inverse Fourier transform.  相似文献   

10.
Let ?? be a bounded domain in ${\mathbb{R}^{n}, n\geq2}$ . We use ${\mathcal{M}_{\Omega}}$ to denote the collection of all pairs of (A, u) such that ${A\subset\Omega}$ is a set of finite perimeter and ${u\in H^{1}\left( \Omega\right)}$ satisfies $$u\left( x\right) =0\quad\text{a.e.}x\in A.$$ We consider the energy functional $$E_{\Omega}\left( A,u\right) =\int\limits_{\Omega}\left\vert\triangledown u\right\vert ^{2}+P_{\Omega}\left( A\right)$$ defined on ${\mathcal{M}_{\Omega}}$ , where P ??(A) denotes the perimeter of A inside ??. Let ${\left( A,u\right)\in\mathcal{M}_{\Omega}}$ be a minimizer with volume constraint. Our main result is that when n????7, u is locally Lipschitz and the free boundary ?A is analytic in ??.  相似文献   

11.
In this paper we describe the actions of the operator $S_\mathbb{D }$ or its adjoint $S_\mathbb{D }^*$ on the poly-Bergman spaces of the unit disk $\mathbb{D }.$ Let $k$ and $j$ be positive integers. We prove that $(S_\mathbb{D })^{j}$ is an isometric isomorphism between the true poly-Bergman subspace $\mathcal{A }_{(k)}^2(\mathbb{D })\ominus N_{(k),j}$ onto the true poly-Bergman space $\mathcal{A }_{(j+k)}^2(\mathbb{D }),$ where the linear space $N_{(k),j}$ have finite dimension $j.$ The action of $(S_\mathbb{D })^{j-1}$ on the canonical Hilbert base for the Bergman subspace $\mathcal{A }^2(\mathbb{D })\ominus \mathcal{P }_{j-1},$ gives a Hilbert base $\{ \phi _{ j , k } \}_{ k }$ for $\mathcal{A }_{(j)}^2(\mathbb{D }).$ It is shown that $\{ \phi _{ j , k } \}_{ j, k }$ is a Hilbert base for $L^2(\mathbb{D },d A)$ such that whenever $j$ and $k$ remain constant we obtain a Hilbert base for the true poly-Bergman space $\mathcal{A }_{(j)}^2(\mathbb{D })$ and $\mathcal{A }_{(-k)}^2(\mathbb{D }),$ respectively. The functions $\phi _{ j , k }$ are polynomials in $z$ and $\overline{z}$ and are explicitly given in terms of the $(2,1)$ -hypergeometric polynomials. We prove explicit representations for the true poly-Bergman kernels and the Koshelev representation for the poly-Bergman kernels of $\mathbb{D }.$ The action of $S_\Pi $ on the true poly-Bergman spaces of the upper half-plane $\Pi $ allows one to introduce Hilbert bases for the true poly-Bergman spaces, and to give explicit representations of the true poly-Bergman and poly-Bergman kernels.  相似文献   

12.
13.
Let $ {{\left( {{\xi_n}} \right)}_{{n\in \mathbb{Z}}}} $ be a stationary sequence of real random variables with E ξ 0 = 0 and infinite variance. Furthermore, assume that $ {{\left( {{c_n}} \right)}_{{n\in \mathbb{Z}}}} $ is a sequence of real numbers and $ {X_n}=\sum {_{{j\in \mathbb{Z}}}{c_j}{\xi_{n-j }}} $ is a moving average processes driven by $ {{\left( {{\xi_n}} \right)}_{{n\in \mathbb{Z}}}} $ . By using a decomposition of the moving average processes, a central limit theorem for the partial sums $ \sum\nolimits_{k=1}^n {{X_k}} $ is established. As applications, we obtain some central limit theorems for stationary dependent sequences $ {{\left( {{\xi_n}} \right)}_{{n\in \mathbb{Z}}}} $ , such as associated sequence, martingale difference, and so on.  相似文献   

14.
15.
In this paper, we study surfaces in Lorentzian product spaces ${{\mathbb{M}^{2}(c) \times \mathbb{R}_1}}$ . We classify constant angle spacelike and timelike surfaces in ${{\mathbb{S}^{2} \times \mathbb{R}_1}}$ and ${{\mathbb{H}^{2} \times \mathbb{R}_1}}$ . Moreover, complete classifications of spacelike surfaces in ${{\mathbb{S}^{2} \times \mathbb{R}_1}}$ and ${{\mathbb{H}^{2} \times \mathbb{R}_1}}$ and timelike surfaces in ${{\mathbb{M}^{2}(c) \times \mathbb{R}_1}}$ with a canonical principal direction are obtained. Finally, a new characterization of the catenoid of the 3rd kind is established, as the only minimal timelike surface with a canonical principal direction in Minkowski 3–space.  相似文献   

16.
We study cohomological induction for a pair $ {\left( {\mathfrak{g},\mathfrak{k}} \right)} $ , $ \mathfrak{g} $ being an infinitedimensional locally reductive Lie algebra and $ \mathfrak{k} \subset \mathfrak{g} $ being of the form $ \mathfrak{k}_{0} \subset C_{\mathfrak{g}} {\left( {\mathfrak{k}_{0} } \right)} $ , where $ \mathfrak{k}_{0} \subset \mathfrak{g} $ is a finite-dimensional reductive in $ \mathfrak{g} $ subalgebra and $ C_{\mathfrak{g}} {\left( {\mathfrak{k}_{0} } \right)} $ is the centralizer of $ \mathfrak{k}_{0} $ in $ \mathfrak{g} $ . We prove a general nonvanishing and $ \mathfrak{k} $ -finiteness theorem for the output. This yields, in particular, simple $ {\left( {\mathfrak{g},\mathfrak{k}} \right)} $ -modules of finite type over k which are analogs of the fundamental series of generalized Harish-Chandra modules constructed in [PZ1] and [PZ2]. We study explicit versions of the construction when $ \mathfrak{g} $ is a root-reductive or diagonal locally simple Lie algebra.  相似文献   

17.
Let ${\left(\tau_j\right)_{j\in\mathbb{N}}}$ be a sequence of strictly positive real numbers, and let A be the generator of a bounded analytic semigroup in a Banach space X. Put ${A_n=\prod_{j=1}^n\left(I+\frac{1}{2}\tau_jA\right)\left(I-\frac{1}{2}\tau_jA\right)^{-1}}$ , and let ${x\in X}$ . Define the sequence ${\left(x_n\right)_{n\in\mathbb{N}}\subset X}$ by the Crank?CNicolson scheme: x n ?=?A n x. In this erratum, it is proved that the Crank?CNicolson scheme is stable in the sense that ${\sup_{n\in\mathbb{N}}\left\Vert A_nx\right\Vert < \infty}$ provided that inequality (0.9) below holds.  相似文献   

18.
We elaborate Weiermann-style phase transitions for well-partial-orderings (wpo) determined by iterated finite sequences under Higman-Friedman style embedding with Gordeev’s symmetric gap condition. For every d-times iterated wpo ${\left({\rm S}\text{\textsc{eq}}^{d}, \trianglelefteq _{d}\right)}$ in question, d >? 1, we fix a natural extension of Peano Arithmetic, ${T \supseteq \sf{PA}}$ , that proves the corresponding second-order sentence ${\sf{WPO}\left({\rm S}{\textsc{eq}}^{d}, \trianglelefteq _{d}\right) }$ . Having this we consider the following parametrized first-order slow well-partial-ordering sentence ${\sf{SWP}\left({\rm S}\text{\textsc{eq}}^{d}, \trianglelefteq _{d}, r\right):}$ $$\left( \forall K > 0 \right) \left( \exists M > 0\right) \left( \forall x_{0},\ldots ,x_{M}\in {\rm S}\text{\textsc{eq}}^{d}\right)$$ $$\left( \left( \forall i\leq M\right) \left( \left| x_{i}\right| < K + r \left\lceil \log _{d} \left( i+1\right) \right\rceil \right)\rightarrow \left( \exists i < j \leq M \right) \left(x_{i} \trianglelefteq _{d} x_{j}\right) \right)$$ for a natural additive Seq d -norm |·| and r ranging over EFA-provably computable positive reals, where EFA is an abbreviation for 0?+?exp. We show that the following basic phase transition clauses hold with respect to ${T = \Pi_{1}^{0}\sf{CA}_{ < \varphi ^{_{\left( d-1\right) }} \left(0\right) }}$ and the threshold point1.
  1. If r <? 1 then ${\sf{SWP}\left({\rm S}\text{\textsc{eq}}^{d}, \trianglelefteq _{d},r \right) }$ is provable in T.
  1. If ${r > 1}$ then ${\sf{SWP}\left({\rm S}\text{\textsc{eq}}^{d}, \trianglelefteq _{d},r \right) }$ is not provable in T.
Moreover, by the well-known proof theoretic equivalences we can just as well replace T by PA or ACA 0 and ${\Delta _{1}^{1}\sf{CA}}$ , if d =? 2 and d =? 3, respectively.In the limit case d → ∞ we replaceEFA-provably computable reals r by EFA-provably computable functions ${f: \mathbb{N} \rightarrow \mathbb{R}_{+}}$ and prove analogous theorems. (In the sequel we denote by ${\mathbb{R}_{+}}$ the set of EFA-provably computable positive reals). In the basic case T?=? PA we strengthen the basic phase transition result by adding the following static threshold clause
  1. ${\sf{SWP}\left({\rm S}\text{\textsc{eq}}^{2}, \trianglelefteq _{2}, 1\right)}$ is still provable in T = PA (actually in EFA).
Furthermore we prove the following dynamic threshold clauses which, loosely speaking are obtained by replacing the static threshold t by slowly growing functions 1 α given by ${1_{\alpha }\left( i\right)\,{:=}\,1+\frac{1}{H_{\alpha }^{-1}\left(i\right) }, H_{\alpha}}$ being the familiar fast growing Hardy function and ${H_{\alpha }^{-1}\left( i\right)\,{:=}\,\rm min \left\{ j \mid H_{\alpha } \left ( j\right) \geq i \right\}}$ the corresponding slowly growing inversion.
  1. If ${\alpha < \varepsilon _{0}}$ , then ${\sf{SWP}\left({\rm S}\text{\textsc{eq}}^{2}, \trianglelefteq _{2}, 1_{\alpha}\right)}$ is provable in T = PA.
  1. ${\sf{SWP}\left( {\rm S}\text{\textsc{eq}}^{2}, \trianglelefteq _{2},1_{\varepsilon _{0}}\right)}$ is not provable in T = PA.
We conjecture that this pattern is characteristic for all ${T\supseteq \sf{PA}}$ under consideration and their proof-theoretical ordinals o (T ), instead of ${\varepsilon _{0}}$ .  相似文献   

19.
Let ${\Phi}$ be a continuous, strictly increasing and concave function on (0, ∞) of critical lower type index ${p_\Phi^- \in(0,\,1]}$ . Let L be an injective operator of type ω having a bounded H functional calculus and satisfying the k-Davies–Gaffney estimates with ${k \in {\mathbb Z}_+}$ . In this paper, the authors first introduce an Orlicz–Hardy space ${H^{\Phi}_{L}(\mathbb{R}^n)}$ in terms of the non-tangential L-adapted square function and then establish its molecular characterization. As applications, the authors prove that the generalized Riesz transform ${D_{\gamma}L^{-\delta/(2k)}}$ is bounded from the Orlicz–Hardy space ${H^{\Phi}_{L}(\mathbb{R}^n)}$ to the Orlicz space ${L^{\widetilde{\Phi}}(\mathbb{R}^n)}$ when ${p_\Phi^- \in (0, \frac{n}{n+ \delta - \gamma}]}$ , ${0 < \gamma \le \delta < \infty}$ and ${\delta- \gamma < n (\frac{1}{p_-(L)}-\frac{1}{p_+(L)})}$ , or from ${H^{\Phi}_{L}(\mathbb{R}^n)}$ to the Orlicz–Hardy space ${H^{\widetilde \Phi}(\mathbb{R}^n)}$ when ${p_\Phi^-\in (\frac{n}{n + \delta+ \lfloor \gamma \rfloor- \gamma},\,\frac{n}{n+ \delta- \gamma}]}$ , ${1\le \gamma \le \delta < \infty}$ and ${\delta- \gamma < n (\frac{1}{p_-(L)}-\frac{1}{p_+(L)})}$ , or from ${H^{\Phi}_{L}(\mathbb{R}^n)}$ to the weak Orlicz–Hardy space ${WH^\Phi(\mathbb{R}^n)}$ when ${\gamma = \delta}$ and ${p_\Phi=n/(n + \lfloor \gamma \rfloor)}$ or ${p_\Phi^-=n/(n + \lfloor \gamma \rfloor)}$ with ${p_\Phi^-}$ attainable, where ${\widetilde{\Phi}}$ is an Orlicz function whose inverse function ${\widetilde{\Phi}^{-1}}$ is defined by ${\widetilde{\Phi}^{-1}(t):=\Phi^{-1}(t)t^{\frac{1}{n}(\gamma- \delta)}}$ for all ${t \in (0,\,\infty)}$ , ${p_\Phi}$ denotes the strictly critical lower type index of ${\Phi}$ , ${\lfloor \gamma \rfloor}$ the maximal integer not more than ${\gamma}$ and ${(p_-(L),\,p_+(L))}$ the range of exponents ${p \in[1,\, \infty]}$ for which the semigroup ${\{e^{-tL}\}_{t >0 }}$ is bounded on ${L^p(\mathbb{R}^n)}$ .  相似文献   

20.
Christian Delhommé 《Order》2006,23(2-3):221-233
We observe that, given a poset ${\left( {E,{\user1{\mathcal{R}}}} \right)}$ and a finite covering ${\user1{\mathcal{R}}} = {\user1{\mathcal{R}}}_{1} \cup \cdots \cup {\user1{\mathcal{R}}}_{n} $ of its ordering, the height of the poset does not exceed the natural product of the heights of the corresponding sub-relations: $$\mathfrak{h}{\left( {E,{\user1{\mathcal{R}}}} \right)} \leqslant \mathfrak{h}{\left( {E,{\user1{\mathcal{R}}}_{1} } \right)} \otimes \cdots \otimes \mathfrak{h}{\left( {E,{\user1{\mathcal{R}}}_{n} } \right)}.$$ Conversely for every finite sequence $(\xi_1,\cdots,\xi_n)$ of ordinals, every poset ${\left( {E,{\user1{\mathcal{R}}}} \right)}$ of height at most $\xi_1\otimes\cdots\otimes\xi_n$ admits a partition ${\left( {{\user1{\mathcal{R}}}_{1} , \cdots ,{\user1{\mathcal{R}}}_{n} } \right)}$ of its ordering ${\user1{\mathcal{R}}}$ such that each ${\left( {E,{\user1{\mathcal{R}}}_{k} } \right)}$ has height at most $\xi_k$ . In particular for every finite sequence $(\xi_1,\cdots,\xi_n)$ of ordinals, the ordinal $$\xi _{1} \underline{ \otimes } \cdots \underline{ \otimes } \xi _{n} : = \sup {\left\{ {{\left( {\xi ^{\prime }_{1} \otimes \cdots \otimes \xi ^{\prime }_{n} } \right)} + 1:\xi ^{\prime }_{1} < \xi _{1} , \cdots ,\xi ^{\prime }_{n} < \xi _{n} } \right\}}$$ is the least $\xi$ for which the following partition relation holds $$\mathfrak{H}_{\xi } \to {\left( {\mathfrak{H}_{{\xi _{1} }} , \cdots ,\mathfrak{H}_{{\xi _{n} }} } \right)}^{2} $$ meaning: for every poset ${\left( {A,{\user1{\mathcal{R}}}} \right)}$ of height at least $\xi$ and every finite covering ${\left( {{\user1{\mathcal{R}}}_{1} , \cdots ,{\user1{\mathcal{R}}}_{n} } \right)}$ of its ordering ${\user1{\mathcal{R}}}$ , there is a $k$ for which the relation ${\left( {A,{\user1{\mathcal{R}}}_{k} } \right)}$ has height at least $\xi_k$ . The proof will rely on analogue properties of vertex coverings w.r.t. the natural sum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号