首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
米红林  陆鹏 《光学技术》2012,38(3):328-331
介绍了一种用于测试面内三个应变分量的应变测量技术,在试件表面预先压制三个压痕,通过激光照射压痕,经衍射后干涉,产生干涉图。通过分析变形前后干涉斑点的光强值的变化来对待测位置进行应变测量。实验表明该方法对待测试件表面损伤小,且压痕应变花尺寸小,是一种新的光学应变测试技术,不仅可以用来进行普通应变测量,尤其对解决小空间应变测试问题有其独特的优点。  相似文献   

2.
The growth and characterization of high‐quality ultrathin Fe3O4 films on semiconductor substrates is a key step for spintronic devices. A stable, single‐crystalline ultrathin Fe3O4 film on GaAs(001) substrate is obtained by post‐growth annealing of epitaxial Fe film with thicknesses of 5 and 12 nm in air. Raman spectroscopy shows a high ability to convincingly characterize the stoichiometry, epitaxial orientation and strain of such ultrathin Fe3O4 films. Polarized Raman spectroscopy confirms the unit cell of Fe3O4 films is rotated by 45° to match that of the Fe (001) layer on GaAs, which results in a built‐in strain of − 3.5% in Fe3O4 films. The phonon strain‐shift coefficient(−126 cm−1) of the A1g mode is proposed to probe strain effect and strain relaxation of thin Fe3O4 films on substrates. It can be used to identify whether the Fe layer is fully oxidized to Fe3O4 or not. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Fourier transform infrared (FT‐IR) and Raman spectroscopy is used for the non‐destructive analysis of painting materials and ageing compounds in micrometric cross sections of a glass painting. The combination of both techniques in conjunction with imaging/mapping function provides the spatial distribution of chemical components identified in vibrational spectra. The aim of our work is to show the applicability of the FT‐Raman mapping technique in the detection of painting materials. We also compare Raman information gained by using two laser excitations at 532 and 1064 nm implemented in microspectrometers with different confocality and spatial resolution. In turn among FT‐IR imaging techniques, we compare chemical images recorded in external reflection and attenuated total reflection modes that give chemical images of different size and spatial resolution. Our FT‐IR and Raman imaging characterize a number of painting materials such as pigments, binders, fillers as well as degradation products. Raman maps are constructed by using the univariate analysis. In turn, a profile of IR images requires the use of a more complex methodology. Here, we compare FT‐IR images of the painting cross sections obtained by using the univariate and hierarchical cluster analysis. We clearly show that the multivariate approach is a powerful tool for the credible construction of IR images, providing the relevant chemical information on the multicomponent stratigraphy of the samples. Moreover, the combination of all the methods allows us to demonstrate their degree of utility for the study on the paint cross sections of the works of art. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Drop‐coating deposition Raman (DCDR) spectroscopy was tested as a potential technique for studying liposomes at very low sample concentrations. We used model liposomes prepared either from 1,2‐distearoyl‐sn‐glycero‐3‐phospocholine or from soybean asolectin, which is composed of various lipids and thus represents a good model of natural membranes. In both cases, deposited samples formed a dried drop with a circular shape with a ring of concentrated liposomes at the edge. Spectral mapping showed that maximum Raman intensity originated from the inner part of the edge ring, while Raman signal gradually decreased in both radial directions. The Raman spectra exhibited excellent reproducibility of spectral characteristics at different locations in the drop, indicating similar conformation and ordering of hydrocarbon lipid chains in the sample. Our results suggest that DCDR spectroscopy can be used for studying lipids in situ, and sensitivity of this technique is at least two orders of magnitude higher than that of conventional Raman microscopy. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Low‐temperature Raman study of (001)‐oriented PrFeO3 thin film of around 200 nm thickness deposited on a LaAlO3 (001) substrate by using the pulsed‐laser deposition technique is presented. X‐ray diffraction analysis of this film shows an orthorhombic structure with Pbnm space group. The observed substrate‐induced strain is found to be small. In the room temperature Raman spectra, different Raman modes were observed that were classified according to the orthorhombic structure. All the observed modes show a decrease in wavenumber with rise in temperature, except the B1g mode (624 cm−1) which shows some anomalous behavior. We tried to correlate the variations in linewidth and position with temperature for the observed modes with the octahedral disorder of FeO6. Many possibilities are presented to explain the observed results. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Fourier Transform Raman spectroscopy (FT‐Raman) has been applied for the non‐destructive in‐situ analysis of pigments on differently colored flower petals of pansy cultivars (Viola x wittrockiana). The main target of the present study was to investigate how far the Raman mapping technique through FT‐Raman spectroscopy and cluster analysis of the Raman spectra is a potential method for the direct, in‐situ discrimination of flavonoids (flavonols against anthocyanins) and of carotenoids occurring in flowers, using intact and differently colored flower petal of Viola x wittrockiana for this case study. In order to get more information about the reliability of the direct in‐situ flavonoid detection by the Raman method, pigments extracts of the petals were separated by thin‐layer chromatography (TLC) and investigated by Raman spectroscopy. Hierarchical cluster analysis (HCA) of the Raman spectra from reference pigments (carotenoids, anthocyanins and flavonols), from areas of the flower petals, and from the TLC extracts allowed discriminating the various pigments, in particular flavonoids (flavonols against anthocyanins) and carotenoids. With a two‐dimensional Raman mapping technique, which provides a chemical image of the sample under investigation, we determined by cluster analysis the distribution of carotenoids, anthocyanins and flavonols from the outer layer of the petals, and by integrating through suitable spectral regions selected as characteristic markers for particular pigments their relative concentration could approximately be determined. We found a satisfactory correlation between the patterns seen on the visible images and the patterns on the chemical images obtained by Raman mapping. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Ge clusters are grown on Si substrate at room temperature (Ge-RT) and also at liquid nitrogen temperature (Ge-LNT) by cluster evaporation technique. These clusters show blue luminescence. Raman measurement demonstrates the increase in strain with annealing in diffused disordered Si at the interface between Ge-LNT clusters and Si substrate. This manifests in strain-relaxation in the clusters as observed by Photoluminescence (PL) measurements. The decrease in PL intensity for Ge-RT with annealing has been attributed to reduction in surface oxide species, which is supported by Raman spectroscopic measurements. The objective of the paper is to understand the effect of thermal annealing on both interfacial strain and interdiffusion of elemental Si at the interface, together with luminescence characteristics of the clusters.  相似文献   

8.
Quantitative characterization of local strain in silicon wafers is critical in view of issues such as wafer handling during manufacturing and strain engineering. In this work, full‐field X‐ray microdiffraction imaging using synchrotron radiation is employed to investigate the long‐range distribution of strain fields in silicon wafers induced by indents under different conditions in order to simulate wafer fabrication damage. The technique provides a detailed quantitative mapping of strain and defect characterization at the micrometer spatial resolution and holds some advantages over conventional methods.  相似文献   

9.
In the recent years, Raman and IR spectroscopies have attracted increasing attention as fast, non‐invasive and widely applicable alternative analytical approaches for a variety of materials. Vibrational spectroscopy has been used in the analysis of herbal products, dyes and sensitive art objects, besides complex and aqueous biomaterials such as biopolymers or mammalian tissue. Compared to conventional analytical methods based on high‐performance liquid chromatography (HPLC) or gas chromatography, which often involves extensive and time‐consuming sample preparation, Raman or IR spectroscopy can avoid these procedures. The present work introduces a fast and reliable quantification method for the determination of naturally occurring indigo dye in dyer's knotweed (Polygonum tinctorium) based on Fourier transform (FT) Raman spectroscopy. The results were validated by HPLC‐UV, and the merits and drawbacks of the present method are elaborated. Besides the qualitative aspects of signal assignment and comparison to appropriate attenuated total reflectance Fourier transform infrared (ATR‐FT‐IR) measurements, the Raman spectrum of dihydro indigo, an important intermediate in the indigo dying process, is presented for the first time and discussed with regard to its spectroscopic behaviour. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Carbon nanotubes (CNTs) have attracted great attention for their potential use in many applications because of their intrinsic properties. The importance other than the impact of the application of CNT‐embedded membranes in the area of water technology development is immense. In this context, the identification and quantification of CNTs in aqueous resources during relevant water purification processes can be proven of high significance. Surface‐enhanced Raman scattering (SERS) potentially has the sensitivity required for trace analysis and has been previously used for CNT identification on solid substrates. A thorough study for the identification and quantification of small concentrations of multi‐walled CNTs (MWCNTs) in water suspensions via SERS has been performed. The functionalization of MWCNTs with pyridine groups seems to favor the surface enhancement of relevant Raman signal. This study constitutes the first step of a work in progress for the characterization of CNTs at quite low concentration range by SERS in any water suspension. It is based on an ex ante functionalization of the CNTs by pyridine, demonstrating the potential of the method. Our long‐term aim is its general application built, however, in an ex post relevant functionalization of the CNTs in any aqueous solution. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Hole-drilling method is a most common technique for measuring residual stresses in various materials and structures, in which the strain gage rosette is usually used to obtain the strain distributions caused by deformation. To avoid disadvantages in the strain gage system, different strain measure methods have been proposed in the previous references. In this paper, an optical technique called as grating rosette and Moiré interferometry is presented and compared with the strain gage one. It is found that higher measure accuracy can be achieved as the hole drilling is combined with the new optical technique instead of the strain gage rosette.  相似文献   

12.
The fantastic variation of the physical properties of carbon nanotubes (CNTs) and their bundles under mechanical strain and hydrostatic pressure makes them promising materials for fabricating nanoscale electromechanical coupling devices or transducers. In this paper, we review the recent progress in this field, with much emphasis on our first-principles numerical studies on the structural and vibrational properties of the deformed CNTs under uniaxial and torsional strains, and hydrostatic pressure. The nonresonant Raman spectra of the deformed CNTs are also introduced, which are calculated by the first-principles calculations and the empirical bond polarizability model.   相似文献   

13.
Carbon nanotubes (CNTs) are potential strain sensors due to their excellent mechanical and spectral properties. A new theoretical model of a CNT strain sensor is obtained by applying the polarized Raman properties of CNTs, which calculates the synthetic contributions of Raman spectra from the CNTs in random directions. By using this theoretical model, the analytic relationship between planar strain components and the Raman shift increment of uniformly dispersed CNTs is obtained, which is applicable for accurately characterizing the strain in random directions on the surface of a measured microsystem.  相似文献   

14.
Raman spectroscopy is an efficient technique for studying the evolution of microstructure of materials under irradiation. For that purpose, a Raman spectrometer has been recently installed at the JANNUS‐Saclay platform. In this paper, we describe the new setup for in situ experiments. These in situ experiments allowed following the microstructural evolution of different materials (SiC, ZrO2 and B4C) as a function of ion fluence on a single sample (either single crystal or polycrystalline ceramics) under the same irradiation conditions. Our results show that Raman spectroscopy is a versatile non‐contact technique for studying on‐line crystalline phase changes or amorphization of irradiated iono‐covalent solids. A detailed analysis of Raman spectra is provided for the three materials (SiC, ZrO2 and B4C) investigated in this study, revealing quite different behaviors upon irradiation. Basically, Raman spectroscopy gives insight on these evolutions at the level of bonds given by specific phonon modes, in good agreement with Rutherford backscattering channeling (RBS/C), X‐ray diffraction (XRD) or transmission electron microscopy (TEM) data, which provide information at a long‐range scale. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Cinchona alkaloids are well‐known antimalarial compounds also used in asymmetric synthesis in organic chemistry. In this work, vibrational spectra of quinine, quinidine, cinchonine, and cinchonidine were acquired and interpreted on the basis of theoretical calculations. Normal Raman spectra of the alkaloids in solution exhibit similar patterns and cannot be used for differentiation between the derivatives (e.g. quinine and cinchonidine) and corresponding pseudoenantiomers (e.g. quinine and quinidine). Thus, Raman Optical Activity (ROA) method was applied to show distinct differences related to the configuration of chiral atoms. ROA allowed unequivocal identification of the pseudoenantiomers based on the sign of the characteristic bands from a single measurement. The experiments were supported by the theoretical approach including conformational study followed by wavenumber calculations and Potential Energy Distribution (PED) analysis. For quinine, vibrational spectroscopy was additionally used to show its structural changes in aqueous solutions at various pH and its distribution in a pharmaceutical product. Spatial distribution of quinine in a drug was observed by the FT‐Raman mapping technique. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
We report a Raman technique applicable for the in situ analysis of the development of hydrogen bonds in the liquid water‐rich phase just before the onset of gas hydrate formation. Herewith, the phase transition as well as the working principle of hydrate formation inhibitors and promoters can be analyzed. © 2015 The Authors. Journal of Raman Spectroscopy published by John Wiley & Sons Ltd.  相似文献   

17.
Optical phonon modes, confined in CdSxSe1−x nanocrystal (NC) quantum dots (≈2 nm in radius) grown in a glass matrix by the melting‐nucleation method, were studied by resonant Raman scattering (RRS) spectroscopy and theoretical modeling. The formation of nanocrystalline quantum dots (QDs) is evidenced by the observation of absorption peaks and theoretically expected resonance bands in the RRS excitation spectra. This system, a ternary alloy, offers the possibility to investigate the interplay between the effects of phonon localization by disorder and phonon confinement by the NC/matrix interface. Based on the concept of propagating optical phonons, which is accepted for two‐mode pseudo‐binary alloys in their bulk form, we extended the continuous lattice dynamics model, which has successfully been used for nearly spherical NCs of binary materials, to the present case. After determining the alloy composition for NCs (that was evaluated with only 2–3% uncertainty using the bulk longitudinal optical phonon wavenumbers) and the NC size (using atomic force microscopy and optical absorption data), the experimental RRS spectra were described rather well by this theory, including the line shape and polarization dependence of the scattering intensity. Even though the presence of a compressive strain in the NCs (introduced by the matrix) masks the expected downward shift owing to the phonons' spatial quantization, the asymmetric broadening of both Raman peaks is similar to that characteristic of NCs of pure binary materials. Although with some caution, we suggest that both CdSe‐like and CdS‐like optical phonon modes indeed are propagating within the NC size unless the alloy is considerably heterogeneous. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
陈东猛 《物理学报》2010,59(9):6399-6404
应用计及五阶近邻的力常数模型,研究了单轴应力下的石墨烯和芳香烃分子三明治型贴层的石墨烯中拉曼谱的G峰劈裂.计算结果表明对称性的降低解除了G峰对应的在Γ点的面内的纵波光学模声子和横波光学模声子能量简并,从而G峰劈裂为G+和G- 两个峰.在单轴应力作用下,C—C键的伸长致使力常数减小,软化了面内的光学模声子,导致两个G峰都红移;芳香烃分子对石墨烯产生的沿分子长短边方向不同的应力作用,使得G峰对应的两支光学模声子的频率一支发生蓝移,而另一支发生红移.这解 关键词: 力常数模型 石墨烯 拉曼G峰劈裂  相似文献   

19.
20.
The fantastic variation of the physical properties of carbon nanotubes (CNTs) and their bundles under mechanical strain and hydrostatic pressure makes them promising materials for fabricating nanoscale electromechanical coupling devices or transducers. In this paper, we review the recent progress in this field, with much emphasis on our first-principles numerical studies on the structural and vibrational properties of the deformed CNTs under uniaxial and torsional strains, and hydrostatic pressure. The nonresonant Raman spectra of the deformed CNTs are also introduced, which are calculated by the first-principles calculations and the empirical bond polarizability model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号