首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In situ atomic force microscopy (AFM) has been utilized in studies of the growth mechanism on the (100) face of zinc tris (thiourea) sulphate (ZTS) crystals growing from solution. The growth on the (100) face of pure ZTS crystal is mainly controlled by two dimensional (2D) nucleation mechanisms, under which the hillock is formed through layer‐by‐layer growth. It is easier to form 2D nuclei at edge dislocation and the apex of steps. The growth of 2D nucleus is in accord with nucleation‐spreading mode. The growth rate along the 〈010〉 direction is faster than that along 〈001〉 direction, both of which increase firstly and then decrease with the spread of nucleus. The kinetic coefficients of one nucleus have been roughly estimated to be 3.6 × 10−4 cm/s and 1.8 × 10−4 cm/s in two directions, while the activation energy E was calculated to be 53.7 kJ/mol and 55.4 kJ/mol, respectively. The 2D nuclei can be generated under lower supersaturation with the addition of EDTA. If there are several hillocks growing together, step bunches will form when the steps moving in the same direction meet each other, while the meeting of steps that move in the inverse direction will result in the separation of steps. The ability of nucleation of edge dislocation outcrops are different even they are close to each other on the same surface. When the nucleus was generated at the edge dislocation sites, it cannot spread speedily until finishes an “incubation period”. Moreover, the detour of microsteps was observed due to the existence of pits. If the microcrystals attached on the surface block the step advancement, or leave the surface or are covered by the macrosteps, the pits are formed. If the macrosteps advanced across the pits, the pits will be covered and the liquid inclusions may form. However, if the microcrystal forming in the pit grow up and expose on the surface, the pit will not be covered by macrosteps. The formation of solid inclusions may be caused by the microcrystals being embedded into the single steps which move layer‐by‐layer.  相似文献   

2.
High quality GaAs layers have been grown by low pressure MOVPE on Ge(001) and Ge(001) 9° off oriented in [110] direction by using a thin low temperature (LT) GaAs layer. Investigations of the initial growth step were performed at different V/III ratios and temperatures. To show the good buffer layer quality solar cell structures were grown on off oriented n‐Ge(001) and n‐GaAs(001) substrates. The surface morphology was studied by atomic force microscopy which showed the step‐flow growth mode on 1.2 µm thick GaAs/Ge structures. The crystalline qualities of this structures and the smooth surface morphology were investigated by double crystal X‐ray diffraction (XRD) and atomic force microscopy (AFM). (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
The morphology, crystalline structure and crystal growth kinetics of melt‐crystallized thin isotactic polybutene‐1 films have been studied with transmission electron microscopy, electron diffraction and optical microscopy. It is demonstrated that a bypass of tetragonal phase crystallization and direct melt crystal growth of the trigonal phase can be achieved via self‐seeding at atmospheric pressure using solution‐grown trigonal crystals as nuclei. Electron microscopy and optical microscopy observations show that melt‐crystallized isotactic polybutene‐1 single crystals of the trigonal phase have rounded or hexagonal morphologies around 75°C. The growth rate of trigonal crystals in the melt has been obtained by in‐situ optical microscopy. The growth rate of trigonal crystals in the melt is 1/100 and 1/1000 that of tetragonal crystals in the melt around 70 and 90°C, respectively. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Growth mechanisms and defect formations on {110} faces of cadmium mercury thiocyanate crystals grown at 30°C (σ=0.24) were investigated by using atomic force microscopy (AFM). It was found that, under this condition, spiral dislocation controlled mechanism and 2D nucleation mechanism operates simultaneously and equally during growth, which is completely different from the traditional 2D nucleation and dislocation source controlled mechanisms. A number of 2D nucleus are formed at the large step terraces generated by dislocation sources, leading to the unequal growth rates of the elementary steps and thereby “step bunches” arecaused. Various defects are formed under this growth condition, which is assumed to result from the incongruence between the steps generated by different sources. A new kind of 2D defect, corresponding to one growth layer in height, was observed for the first time.  相似文献   

5.
By altering the concentration of a new additive ‐ diethylene triamine pentacetate acid (DTPA) in the growth solution, a series of KDP crystals were obtained by the “point seed” rapid growth method. The growth rates up to about 20 mm/day. Effects of DTPA on the growth habit and optical properties of these as‐grown KDP crystals were investigated. The results reveal that, with the increase of DTPA concentration in growth solution, the contents of impurity metal ions incorporated into crystal and aspect ratio of crystal morphology were both decreased gradually, while the UV transmittance of crystal was enhanced continually. In the presence of moderate concentration of DTPA (100–200 ppm), the solution stability was increased and optical properties of crystal (including optical homogeneity, light scattering and laser damage threshold) were all improved. However excessive doping (>500 ppm) has opposite effects. The impact mechanism was also analyzed combining with the structure of KDP crystal and chemical characteristics of DTPA molecular.  相似文献   

6.
Surface coarsening on high Tc superconducting single crystals is proposed to be due to the effect of impurity adsorption on the collective motion of growth steps. Differential interference contrast microscopy (DICM), scanning tunneling microscopy (STM), and polarized optical microscopy (POM) were used for the surface phenomena observations.  相似文献   

7.
Surface morphologies of CdHg(SCN)4 (CMTC) crystals grown from solutions with excessive amount of Cd(II) cations (5%, 20% and 50% in molar ratio) have been investigated by atomic force microscopy (AFM). [Cd(SCN)n]2‐n (n ≤ 4) complex anions formed by addition of excessive Cd(II) cations in the solutions have been found to act either as growth units or impurities during CMTC crystal growth. On the prismatic faces, incorporation of [Cd(SCN)n]2‐n (n ≤ 4) complex anions as growth units leads to the formation of well‐oriented protuberance trains at the step fronts, named as “locally anisotropic crystal growth”. These protuberances become fewer, less distinct and nearly disappeared with the increase of excessive Cd(II) cations in the solutions. The pyramidal face, however, varies from regular 2D nucleation growth at a low concentration of Cd(II) to much rougher growth surfaces at high concentrations, exhibiting typical surface morphologies where crystal growth is completely inhibited by impurities. Observations in this experiment provide a new picture of crystal growth.  相似文献   

8.
The results of an in situ investigation of the effect of four different bi‐ and trivalent cations (Fe(III), Cu(II), Mn(II) and Cr(III)) on the displacement velocity of individual growth steps on the (110) face of ammonium oxalate monohydrate crystals as a function of supersaturation are described and discussed. It was observed that: (1) at a particular temperature of pure solutions and solutions containing impurities, the velocity v of movement of the [110] growth steps is always greater than that of the [111] steps, (2) fluctuations in the velocity of individual growth steps occur in all solutions containing similar concentrations of different impurities, (3) the value of kinetic coefficient β for growth steps decreases with an increase in the concentration ci of Cu(II) impurity, but that for dissolution steps does not depend on ci; moreover, the value of kinetic coefficient β for growth steps is higher than that of dissolution steps, and (4) in the presence of Mn(II) and Cr(III) impurities, the kinetic coefficient β for dissolution steps is several times greater than that for growth steps. The results are explained from the standpoint of Kubota‐Mullin model of adsorption of impurities at kinks in the steps and the stability of dominating complexes present in solutions. Analysis of the results revealed that: (1) the effectiveness of different impurities in inhibiting growth increases in the order: Fe(III), Cu(II), Mn(II), and Cr(III), and this behavior is directly connected with the stability and chemical constitution of dominating complexes in saturated solutions, (2) fluctuations in the velocity of growth steps is associated with the effectiveness of an impurity for adsorption; the stronger the adsorption of an impurity, the higher is the fluctuation in step velocity v, and (3) depending on the nature of the impurity, the kinetic coefficient for the dissolution steps can remain unchanged or can be higher than that of the growth steps. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
The crystalline quality of aluminum nitride (AlN) epilayers grown on sapphire substrates by MOCVD was improved by increasing hydrogen flow rate during the high temperature growth process. The AlN epilayer exhibited a root mean square (rms) of roughness was 1.944 nm from the 2×2 µm2 size atomic force microscopy (AFM) images. Full widths at half maximum (FWHMs) of (002) and (102) rocking curves of triple‐axis high resolution X‐ray diffraction (HRXRD) measurements were as narrow as 28.8 arc sec and 868 arc sec, respectively. The optical transmittance spectra showed a sharp absorption edge at a wavelength of 200 nm and strong Fabry‐Perot (FP) oscillations. It is proposed that the improvement in crystalline quality is due to the surface in the low‐temperature aluminum nitride (LT‐AlN) buffer layer is promoted to be stable Al‐polarity by the conditions of increasing hydrogen flow rate and ramping up the growth temperature. Addtionally, the parasitic reactions are effectively suppressed by increasing the hydrogen flow rate during the growth process of high temperature. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
A fluidized bed crystallizer is employed to investigate the growth and dissolution rates of MgSO4·7H2O from aqueous solutions in the presence of borax as impurity at 25°C. By adding 0.5, 1, 2 and 5 wt % of impurity the pH value changes from 6.7 to 7.11, while the saturation temperature shifts to 24.8, 24.4, 24 and 23.1°C, respectively. The data on crystal growth rates from aqueous solutions as a function of impurity concentration are discussed from the standpoint of Cabrera and Vermileya, and Kubota and Mullin. The value of the impurity effect, αθeq, determined from analysis of the data on growth kinetics was found to be in good agreement with the value obtained from direct adsorption experiments. The estimated value of the average spacing between the adjacent adsorption active sites and the average distance between the neighbouring impurity‐adsorbed sites are also reported. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
The structure and properties of Czochralski (Cz)‐grown Ge1‐xSix mosaic crystals were investigated using optical microscopy, atomic force microscopy, X‐ray diffraction analysis, microprobe analysis, FTIR and transmission electron microscopy. The role of segregation, form of solid‐liquid interface and dislocation generation in the development of mosaic structure were analyzed and used for optimization of growth parameters such as Si concentration and growth rate. The dislocation density estimated experimentally was compared with the calculated data. Composition fluctuations caused by formation of cellular structure at the interface lead to a local lattice misorientation that is one of the reasons for crystal mosaicity. Model of mosaic structure generation in terms of dislocation density and composition variations is presented.  相似文献   

12.
A low‐temperature synthetic route was used to prepare oriented arrays of ZnO nanorods on ITO conducting glass substrate coated with buffer layer of ZnO seeds in an aqueous solution. The corresponding growth behavior and optical properties of ZnO nanorod arrays were studied. It was found that the nature of the buffer layer had effect on the microstructures and optical properties of the resultant ZnO nanorod arrays. X‐ray diffraction (XRD) results showed the nanorods were preferentially grown along (002) direction, but the diameter of the nanorods prepared with the buffer layer was much smaller than the without one, which can be clearly seen from the scanning electron microscopy (SEM) results. And it also found that the buffer layer was not only enhanced the density of overall coverage but also beneficial to grown the oriented arrays. Photoluminescence spectroscopy (PL) results indicated that the all the samples had the better optical behaviors. By computation, the relative PL intensity ratio of ultraviolet emission (IUV) to deep level emission (IDLE) of ZnO nanorods grown with the pure substrate was much higher than that of the sample with the buffer layer. The defects on the surface increased with the size reduction of nanorods caused by the buffer layer may be the main reason for it. And the small shift in the UV emission was caused by the rapid reduction in crystal size and compressive stress from Raman spectra results. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Initial stages of SiC crystal growth by Physical Vapor Transport method were investigated. The following features were observed: (a) many nucleation crystallization centres appeared on the seed surface during the initial stage of the growth, (b) at the same places many separate flat faces generated on the crystallization front, (c) the number of facets was dependent on the shape of the crystallization front and decreased during growth, (d) appearance of many facets lead to decrease of structural quality of crystals due to degradation of regions where crystallization steps from independent centres met. The results revealed that the optimal crystallization front should be slightly convex, which permits the growth of crystals with single nucleation centre and evolution of single facet on the crystallization front. The subjects of study were the shape and the morphology of growth interface. Defects in the crystallization fronts and wafers cut from the crystals were studied by optical microscopy, atomic force microscopy (AFM) combined with KOH etching and X‐ray diffraction. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
本文借助Olympus光学显微镜、扫描电子显微镜(SEM)和原子力显微镜(AFM)对高温高压合成的含硼金刚石单晶表面形貌进行了分析.研究发现,含硼金刚石表面存在蚀坑、球形颗粒集团、平行台阶、花瓣状生长丘和三角形螺旋台阶等多种表面形貌.这些形貌与晶体内部的缺陷有关,硼原子的进入使金刚石晶体生长速度增加,位错增多,进而导致不同表面形貌的形成,螺旋位错生长是含硼金刚石的主要生长方式.  相似文献   

15.
Liquid inclusions and various defects accordingly induced on a nonlinear optical material of CMTC crystal were investigated by atomic force microscopy. Liquid inclusions are chiefly caused by formation of macrosteps, which result from impurity‐induced inhibiting of step growth and meeting of step trains advancing along different directions. Liquid inclusions induce generation of dislocations and even cracks within the crystal by three‐dimensional nucleation growth. Liquid inclusions also provide screw dislocation growth sources, leading to formation of spiral hillock trains with ridged tails. Etching experiments reveal circular hollow cores, indicative of screw dislocation growth, and negative crystals resulting from further crystallization in the liquid inclusions. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Surface morphology of the (100) face of potassium dihydrogen phosphate (KDP) crystals which were grown at different supersaturations at 25 °C was investigated by in situ atomic force microscopy (AFM). Various AFM images of 2D nucleation under different growth conditions were presented. It is found that the growth of KDP is controlled by polynuclear nucleation mechanism at the high supersaturation. With reduction of the supersaturation, the growth velocity of 2D nuclei becomes very slow and shows typical anisotropy. It is found that the process of coalescence of 2D nuclei does not lead to defect. The experiments show that the growth mechanism for KDP at 25 °C changes between step flow and 2D nucleation in the supersaturation range of 4.5‐5%. The triangular nuclei which are close to equilateral triangle are observed in the experiment at the supersaturation σ = 6% for the first time, showing typical anisotropic growth. Through observing the dissolution of 2D nuclei, the dissolving process can be regarded as the reverse process of growth. We also find that the microcrystals landing on the surface at σ = 9% would grow and coalesce with each other and there is no observable defect in the coalescence. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
We prepared Co‐doped ZnO films by the electrochemical deposition. X‐ray diffraction (XRD), high resolution transmission microscopy (HRTEM), x‐ray photoelectron spectroscopy (XPS), atomic force microscope (AFM), x‐ray absorption near‐edge structure (XANES), vibrating sample magnetometer (VSM), optical absorption, and photoluminescence (PL) measurements were carried out on the samples. The results showed Co atoms substituted Zn atoms in the ZnO lattice without the formation of the impurity phase. VSM measurements showed the ferromagnetic properties for the Co‐doped ZnO samples. When the Co doping concentration increased, the band gaps were widened and the PL peak positions shifted towards the short wavelength direction. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
A generalised treatment of the appearance of supersaturation barriers σd, σ* and σ** during the growth of single crystals is outlined from the standpoint of well‐defined critical values of relative step velocities on a face. The final theoretical expressions are based on the premise that: (1) there are critical values of the relative step velocities associated with different average distances between adsorbed impurity particles during instantaneous, time‐dependent and time‐independent adsorption of the impurity on the growing surface, (2) the growth rate of a face is proporptional to velocity of steps on the growing face, and (3) Freundlich and Langmuir adsorption isotherms apply for different impurities. The theoretical expressions are then used to critically analyse the experimental data on supersaturation barriers observed during the growth of ammonium oxalate monohydrate and potassium dihydrogen phosphate single crystals from aqueous solutions containing different impurities. It was found that: (1) Langmuir adsorption isotherm is more practical for the analysis of the experimental data of the dependence of supersaturation barriers σd, σ* and σ** on the concentration ci of an impurity, and (2) the ratios σd/σ* and σ*/σ** of successive supersaturation barriers for an impurity either increases or remains constant with an increase in impurity concentration ci, and may be explained in terms of the mechanism of adsorption of impurity particles. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
A series of KDP crystals doped with WO42‐ additive was grown by using rapid growth method. WO42‐ additive inhibited the growth of (100) faces and made (100) faces tapering. With high additive concentration, two adjacent (100) faces twisted towards their intersecting crystal edge and (100) faces became twisting. Moreover, high index facets of (512) were exposed when the additive concentration was 500 ppm. The element analysis suggested that WO42‐ was prone to being incorporated with (100) face. The growth kinetics of (100) face testified that WO42‐ played an inhibited role. The AFM investigation on (100) face indicated WO42‐ could impede step bunching. High concentration of WO42‐ could kink the terrace of the macro‐steps and create another series of macro‐steps. The motion direction of the new creative steps was vertical to that of the original steps. When the motions of the vertical steps were both inhibited by WO42‐, the steps would become tapering and (100) face would twist, which ultimately led to the exposure of (512) facets. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
AFM is a powerful tool for imaging nanoscale surface features; it provides two and three dimensional crystal structure images and other information about actual surface of zeolite crystallites. In this paper, nanosized zeolite L is synthesized in different crystallization times and a study of crystal growth of zeolite L is reported using atomic force microscopy (AFM). X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) techniques are used for characterization of the as synthesized samples. TEM and two‐dimensional AFM images indicate that the zeolite particles are in a nano‐range and they have hexagonal structure. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号