首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
K0.5Na0.5NbO3 powders have been directly synthesized by an alternative solid–state method. Stoichimometric mixture of ammonium niobium oxalate and C4H4O6KNa·4H2O were calcined in temperature range from 500 to 800 °C for 3 h. The precursor and calcination products were characterized with respect to stoichiometry, purity, crystalline structure, particle size and powder morphology using X–ray diffraction (XRD), X‐ray fluorescence (XRF) spectrometer, scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectra, thermogravimetric (TG) analysis, differential scanning calorimetry (DSC) and UV–Vis diffuse reflectance (UV–Vis) spectroscopy. XRD and XRF results reveal that stoichiometric K0.5Na0.5NbO3 powders could be synthesized by the method. The particle size is about 68 nm for the precursor calcined at 500 °C according to XRD data, which is in good agreement with SEM data. The average band gap energy is estimated to be 3.18 eV by UV–vis diffuse reflectance spectra. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
A transparent glass with the composition 60B2O3–30Li2O–10Nb2O5 (mol%) was prepared by the melt quenching technique. The glass was heat-treated with and without the application of an external electric field. The as-prepared sample was heat-treated (HT) at 450, 500 and 550 °C and thermoelectric treated (TET) at 500 °C. The following electric fields were used: 50 kV/m and 100 kV/m. Differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman, dc and ac conductivity, as a function of temperature, were used to investigate the glass and glass-ceramics properties. LiNbO3 crystals were detected, by XRD, in the 500 °C HT, 550 °C HT and 500 °C TET samples. The presence of an external electric field, during the heat-treatment process, improves the formation of LiNbO3 nanocrystals at lower temperatures. However, in the 550 °C HT and in the TET samples, Li2B4O7 was also detected. The value of the σdc decreases with the rise of the applied field, during the heat-treatment. This behavior can indicate an increase in the fraction of the LiNbO3 crystallites present in these glass samples. The dc and ac conduction processes show dependence on the number of the ions inserted in the glass as network modifiers.The Raman analysis suggests that the niobium ions are, probably, inserted in the glass matrix as network formers.These results reflect the decisive effect of temperature and electric field applied during the thermoelectric treatment in the structure and electric properties of glass-ceramics.  相似文献   

3.
In this paper, we report a synthesis, characterization and electrochemical properties of V2O5 nanobelts. V2O5 nanobelts have been prepared via hydrothermal treatment of commercial V2O5 in acidic (HCl/H2SO4) medium at relatively low temperature (160 °C). The hydrothermally derived products have been characterized by powder X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FT‐IR), Raman spectroscopy, X‐ray photo electron spectroscopy (XPS), UV‐Vis spectroscopy, Scanning/Transmission electron microscopy (SEM/TEM). XRD pattern of V2O5 nanobelts show an orthorhombic phase. From the FTIR spectrum, the peak observed at 1018 cm−1 is characteristic of the stretching vibration mode of the terminal vanadyl, V = O. The UV‐Vis absorption spectrum of V2O5 nanobelts show maximum absorbance at 430 nm, which was blue‐shifted compared to that of bulk V2O5. TEM micrographs reveal that the products consist of nanobelts of 40‐200 nm in thickness and several tens of micrometers in length. The electrochemical analysis shows an initial discharge capacity of 360 mAh g−1 and its almost stabilized capacity is reached to 250 mAh g−1 after 55 cycles. A probable reaction mechanism for the formation of orthorhombic V2O5 nanobelts is proposed.  相似文献   

4.
Single crystalline and crack free potassium lithium niobate (KLN) single crystals with low Li content were grown by the Czochralski method. The crystal composition can be written as K2.60Li1.17Nb5.44O15 (=K2.95Li1.33Nb6.17O17) which contain relatively fewer Li ions than ferroelectric K3Li2Nb5O15 crystals. All experimental results show that the deficiency of the Li ions in the KLN crystals strongly influences their physical properties. Especially, the as‐grown crystals do not indicate any signature for a ferroelectric phase transition in contrast to the ferroelectric K3Li2Nb5O15 crystals. However, due to ionic conduction, the temperature dependence of the dielectric constant of such KLN‐2 crystals show a broad anomaly near 300°C. In addition, the existence of proton defects can be revealed by infrared absorption spectroscopy near 3500 cm‐1 in as‐grown crystals.  相似文献   

5.
A series of Sc:Er:LiNbO3 crystals have been grown by Czochralski method. Their ultraviolet‐visible (UV‐Vis) absorption spectra was measured and discussed to investigate their defect structure. The optical damage resistance of Sc:Er:LiNbO3 crystals was characterized by the transmitted beam pattern distortion method. It increases remarkably when the concentration of Sc2O3 exceeds a threshold concentration. The optical damage resistance of Sc (3.0mol %):Er:LiNbO3 is much higher than that of the Er:LiNbO3. The intrinsic and extrinsic defects were discussed to explain the enhance of the optical damage resistance in the Sc:Er:LiNbO3 crystals. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
The near sotichiometric Ce:LiNbO3 (Ce:SLN) crystals were grown by the top seeded solution growth (TSSG) method by adding K2O flux to Li2O‐Nb2O5 melt. Their UV‐vis absorption spectra and IR spectra were measured and discussed to investigate their defect structure. The results showed that the grown crystals were near stoichiometric and Ce ions in the crystals located the Li site. Photorefractive properties of Ce:SLN crystals were studied by two‐wave coupling experiment. The results of the two‐wave coupling experiments of the crystals showed that as the CeO2 doping concentrations increased, the diffraction efficiency increased, photoconductivity decreased and the writing time and erasure time increased. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Different morphologies of single‐crystalline orthorhombic phase bismuth sulfide (Bi2S3) nanostructures, including sub‐microtubes, nanoflowers and nanorods were synthesized by a urea‐assisted hydrothermal method at a low temperature below 120 °C for 12 h. The as‐synthesized powders were characterized by X‐ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high‐resolution transmission electron microscopy (HRTEM) and UV‐vis spectrophotometry. The experimental results showed that the sulfur sources had a great effect on the morphology and size of the resulting powders. The formation mechanism of the Bi2S3 nanostructures with different morphologies was discussed. All Bi2S3 nanostructures showed an appearance of blue shift relative to the bulk orthorhombic Bi2S3, which might be ascribed to the quantum size effect of the final products. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
In this paper, chalcopyrite AgInS2 nanorods were synthesized for the first time by a one‐step, ambient pressure, environment friendly organic molten salt (OMS) method at 200 °C. The as‐synthesized products were characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), respectively. The XRD results reveal that the as‐synthesized products at 120–160 °C under ambient pressure contain AgIn5S8 which will decrease with the increase of growth temperature. A sample containing only the chalcopyrite AgInS2 phase is successfully obtained at 200 °C. Furthermore, the elemental compositions are found to become increasingly stoichiometric with increasing temperature. UV‐Vis and photoluminescence (PL) spectra are utilized to investigate the optical properties of AgInS2 nanorods. By testing on UV‐Vis spectra, it is concluded that the limiting wavelength of the AgInS2 nanorods is 661 nm and the band gap is 1.88 eV. A broad red emission band peak centered at about 1.874 eV (662 nm) is clearly observed at room temperature, and the intensity of the emission increases with excitation wavelength. In addition, the photoluminescence quantum yield (PLQY) of the nanocrystals at the excitation wavelength of 250 nm was determined to be 13.2%. A possible growth mechanism of AgInS2 nanorods was discussed. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
A new LiNbO3 bulk crystal has been grown by doping with MgO (cs-MgO:LN; Li2O:Nb2O5:MgO=45.30:50.00:4.70, (Li0.906Mg0.047VLi0.047)NbO3), which successfully has the congruent point coinciding with the stoichiometric point. Its second-harmonic-generation (SHG) properties were evaluated. It was found that cs-MgO:LN has a much more homogeneous composition leading to uniform in-plane distribution of the non-critical phase-matching wavelength than the conventional LiNbO3 crystals such as congruent LiNbO3 (c-LN), stoichiometric LiNbO3 (s-LN), and MgO-doped congruent LiNbO3 (5MgO:LN). This homogeneity arose from the observation that none of the solute components including ionic species were segregated at the interface during growth. The SHG conversion efficiency of cs-MgO:LN is comparable to those of s-LN and 5MgO:LN.  相似文献   

10.
We synthesized mercuric iodide and bismuth tri‐iodide nanoparticles by suspension in octadecene, from Hg(NO3)2.H2O and I2, and from Bi(NO3)3.5H2O and I2, respectively. The best synthesis conditions were 2 h at 70‐80 °C, followed by 10 min at 110 °C for mercuric iodide nanoparticles, and 4 h at 80‐110 °C, followed by 10 min at 180‐210 °C for bismuth tri‐iodide ones. Nanoparticles were then washed and centrifuged with ether repeatedly. Compounds identity was confirmed by X‐ray diffraction (XRD) and energy dispersive spectrometry (EDS). We found shifts of the X‐ray diffraction maxima for nanoparticles of both compounds. We characterized the nanoparticles by transmission (TEM) and scanning (SEM) electron microscopy. We obtained disk‐like and squared mercuric iodide nanostructures, 80‐140 nm and 100‐125 nm in size respectively. We also obtained rounded and rod‐like bismuth tri‐iodide nanoparticles, 30‐500 nm in size. Acetonitrile and isopropanol suspensions of mercuric iodide nanoparticles, and acetonitrile suspension of bismuth tri‐iodide nanoparticles exhibited peak maxima shifts in their UV‐Vis spectra. We synthesized for the first time mercuric iodide and bismuth tri‐iodide nanoparticles by the suspension method, although we have not yet obtained uniform shape and size distributions. They offer interesting perspectives for crystalline film nucleation and for improving current applications of these materials, as well as for opening new ones. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Amorphous nanoheterogeneities of the size less than 100 Å have been formed in glasses of the Li2O–Nb2O5–SiO2 (LNS) and Li2O–ZnO–Nb2O5–SiO2 (LZNS) systems at the initial stage of phase separation and examined by transmission electron microscopy, small-angle X-ray and neutron scattering. Both LNS and LZNS nanoheterogeneous glasses exhibit second harmonic generation (SHG) even when they are characterized by fully amorphous X-ray diffraction (XRD) patterns. Chemical differentiation and ordering of glass structure during heat treatments at appropriate temperatures higher Tg lead to drastic increase of SHG efficiency of LNS glasses contrary to LZNS ones in the frame of amorphous state of samples. Following heat treatments of nanostructured glasses result in crystallization of ferroelectric LiNbO3 and non-polar LiZnNbO4 in the LNS and LZNS glasses, respectively. Taking into account similar polarizability of atoms in LNS and LZNS glasses, the origin of the principal difference in the second-order optical non-linearity of amorphous LNS and LZNS samples is proposed to connect predominantly with the internal structure of formed nanoheterogeneities and with their polarity. Most probably, amorphous nanoheterogeneities in glasses may be characterized with crystal-like structure of polar (LiNbO3) phase initiating remarkable SHG efficiency or non-polar (LiZnNbO4) phase, which do not initiate SHG activity. It gives an opportunity to vary SHG efficiency of glasses in a wide rage without remarkable change of their transparency by chemical differentiation process at the initial stage of phase separation when growth of nanoheterogeneities is ‘frozen’. At higher temperatures, LiNbO3 crystals identified by XRD precipitate in LNS glasses initiating even more increase of SHG efficiency but visually observable transparency is impaired.  相似文献   

12.
Single crystals of L‐histidine tetrafluoroborate (C6H10N3O2BF4 , L‐HFB) were grown by solution growth method using two different temperature profiles: conventional, in which the growth temperature was kept constant at 30°C and rapid, in which it was increased in steps of 1 K per day while keeping the other growth conditions same. Crystals grew in nearly 30 and 10 days in the two methods, respectively. The crystals were transparent and showing its characteristic morphology. Both types of crystals were characterized by XRD for their structural comparison. Surface morphology and growth features of the crystals were studied by SEM. Features of two dimensional layer growth steps, rectangular etch pits, slip lines and bands, etc. were observed. The presence of various functional groups and their bonding were studied by FTIR in the range 4000‐400 cm‐1. Thermal stability of the crystals was determined by thermo‐gravimetric and differential thermal analysis. The generation of green light due to second harmonic generation for fundamental λ =1064 nm has been confirmed in both cases. Dielectric constant measurement was carried out in the range 20Hz‐2MHz. In the UV‐Vis studies, high transmittance and a shorter ‘lower cut off' value (232 nm) were observed. The effect of rapid growth on the structural, morphological and optical properties of the crystals were studied and compared to those of crystals grown in conventional way. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
This study is interested in the effect of lithium carbonate on the formation of hexagonal boron nitride (hBN) by means of the available experimental methods including TGA, XRD, FTIR, SEM and HR‐TEM. hBN samples were synthesized at the 1450 °C with different molar ratios of lithium carbonate by modified O'Connor routine. The crystalline hBN formation tended to improve with the increment of the Li2CO3 concentration level (especially after more 20 %). The dopant quantity decreased the residual stresses due to the presence of possible relaxation mechanisms along with the nanocrystal structure, even favored by XRD experimental findings regarding the enhancement of crystal plane alignments, crystallite sizes and lattice parameters. As for the FTIR surveys, the Li2CO3 foreign impurities strengthened more and more the covalent bonds between boron and nitrogen atoms. At the same time, the samples with 40 % lithium carbonate were annealed at the varied temperatures of 1000, 1150, 1300 and 1450 °C to determine the optimum annealing temperature. The XRD+FTIR investigations indicated that the degree of hexagonality improved with the increased annealing temperature. Similarly, the surface morphology confirmed not only the formation of regularity and flaky hexagonal BN structures, but also the strengthening of covalent bonds between the atoms.  相似文献   

14.
Nanocrystals of magnetite (Fe3O4) were prepared by sol‐gel technique. The prepared nanocrystals were characterized for phase by powder X‐ray diffraction (XRD) of the samples annealed at successively higher temperature. The magnetite phase was formed during the annealing of the synthesized powder at 400 °C for a few hours. The Fourier transform infrared spectroscopy (FTIR) was performed to analyze the functional groups in the material. The energy dispersive X‐ray diffraction (EDAX) was performed for chemical composition analysis. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques were used to analyze the morphology of nanocrystals and for estimating their average size. The results confirm the formation of Fe3O4nanocrystals of the sizes ∼20–50 nm. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Pure Co3O4 microcrystals were prepared by a hydrothermal method from Co(NO3)2·6H2O and urea solution, and the effect of thermal treatment time on the growth of Co3O4 microcrystals was studied by X‐ray diffraction (XRD), scanning electron microscopy (SEM), Raman and UV‐Vis absorption spectra. The results show that with the thermal treatment time increases from 2 h to 12 h, the shape of as‐prepared Co3O4 microcrystals changes from the hedgehog sphere‐like to the as‐cubic one that were stacked by lots of lamella, and finally cubes, and then longer time treatment will only lead to the size growth and agglomeration of particles. In conclusion, the cubic Co3O4 microcrystals of uniform size (∼6 μm) are synthesized via a 12‐h thermal treatment. Moreover, the synthesis mechanism has been studied.  相似文献   

16.
L‐histidinium acetate dihydrate {abbreviated as LHAc; [C6H10 N3O2+ C2H3O2 2H2O], a new nonlinear optical (NLO) material has been grown from aqueous solution. The grown crystals were subjected to X‐ray diffraction, Fourier transform infrared (FTIR) and FT‐Raman analyses. Thermal studies have been carried out for its thermal stability. Optical behaviour such as UV‐Vis‐NIR spectrum and second harmonic generation (SHG) were also investigated. Its SHG efficiency was found as deff = 2.2 deff (KDP). (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Single crystals of tetraethylammonium tetrachlorocuprate (II), [N(C2H5)4]2CuCl4, were grown by slow evaporation method at room temperature. The crystals were characterized through powder XRD, thermogravimetric (TG‐DTA), low temperature differential scanning calorimetric (DSC) studies and FTIR spectroscopy. While the powder XRD pattern of the compound shows sharp Bragg peaks confirming the crystallinity of the compound, the TG‐DTA studies confirm formation of the compound in the stoichiometric ratio. The thermal anomalies observed in DSC curve at ‐120°C in the heating cycle and around ‐30°C in the cooling cycle indicate a first order phase transition. The phase transition was predicted to be associated with the ordering of CuCl42‐ and successive long range orientation of [N(C2H5)4]+ ions which are disordered at high temperatures. The cationic [N(C2H5)4]+ plays a role in phase transitions at low temperatures. The sharp exothermic peak observed in high temperature DSC indicates a structural phase transition when [N(C2H5)4]CuCl3 is formed on heating the compound. The FTIR spectra of the compound characterize the various chemical bonding and water molecules adsorbed in the compound. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Single crystals of ytterbium tartrate trihydrate have been grown by gel method using silica and agar‐agar gels as media of growth. The medium of growth influences the morphology of grown crystals, silica gel yielding single and polycrystalline in the form of spherulites whereas agar‐agar gel leading to growth of single and twinned crystals. Materials grown as single crystals have been characterized by using optical and scanning electron microscopy (SEM), EDAX, XRD, FT‐IR, CHN and thermogravimetric techniques. The stoichiometry of the grown single crystals is suggested to be Yb(C4H4O6) (C4H5O6).3H2O. The FT‐IR spectrum shows the presence of singly as well as doubly ionized tartrate ligands. Results of thermal analysis indicate that the material is thermally stable up to a temperature of 200 °C. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
Single crystals of lead zinc niobate‐lead titanate (1‐x)Pb(Zn1/3Nb2/3)O3–xPbTiO3 for x = 8% and 9% have been grown by flux method using Lead Oxide (PbO) as flux. Low scan rate XRD has been carried out to investigate on the structural influence of the compositional variations in the grown crystals. Transmission spectra in the range of UV‐Vis‐Near IR and mid IR regions have been carried out to understand the distortions caused in the BO6 octahedral lattice. Morphological aspects of as‐grown PZN‐PT crystals have also been investigated. Dielectric measurements clearly explained the dependence of Tc and diffusiveness with PT content. The values of Pr and Ecobtained from P‐E loops suggest the presence of ordered domain state in these PZN‐PT single crystals. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
The title compound, C17H17N1O5, has been synthesized and characterized by single crystal X‐ray analysis and UV‐Vis spectra. The crystals are monoclinic, P 21/c, a = 17.994 (5) Å, b = 4.0592 (9) Å, c = 21.625 (5) Å, β = 99.634 (5)°, V = 1557.2 (6) Å3 and Z = 4. The molecule has an almost stretched form with a molecular length of 17.505 Å and an imbricated structure known for liquid crystals. The structure contains no direction‐specific intermolecular interactions like aromatic π‐π stacking and C‐H… π(arene) other than two weak C‐H…O hydrogen bonds. Good optical transmittance in the entire visible region of the UV‐Vis spectrum suggests that it is a potential candidate for optoelectronic applications. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号