首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pure and homogeneous single crystals of orthorhombic mullite‐type Bi2M4O9 (M = Al3+, Ga3+, Fe3+), and a mixed Bi2Fe1.7Ga2.3O9 crystal from an equimolar Ga/Fe composition were grown by the top seeded solution growth (TSSG) method. All these compounds melt incongruently in the range of about 800 and 1100 °C. In case of bismuth gallate and ferrate inclusion‐free crystals with dimensions up to several cubic centimeters can be grown. Limited solubility in Bi2O3 and the high steepness of the liquidus curve are the reasons for getting only small imperfect bismuth aluminate crystals. In contrast to ceramic materials preparation reported in literature, divalent calcium and strontium could not be incorporated into the mullite‐type structure during the melt growth process. Several fundamental physical properties like heat capacity, thermal expansion, heat conductivity, elastic constants, high‐pressure behavior and oxygen diffusivity were determined by different research groups using single‐crystalline samples from the as‐grown materials. Furthermore, the refractive indices of Bi2Ga4O9 were measured in the range of 0.430 and 0.700 μm. Such as many other bismuth containing compounds the refractive indices of Bi2Ga4O9 are larger than 2, and Bi2Ga4O9 is an optic biaxial positive crystal. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Top‐seeded growth of Bi2B8O15 from a stoichiometric melt is reported. Crystals have been grown with dimensions of up to 24 × 12 × 5 mm3 . Bi2B8O15 shows twin domains at room temperature; their origin was investigated by methods of thermal analysis. The domains were found to result from a sluggish phase transition that occurs in a broad temperature range (ΔT ≈ 20 K) around ∼390 K. Unit cell parameters at room temperature were determined: a = 4.3140(6) Å, b = 22.148(2) Å, c = 6.4695(6) Å, β = 105.46(1)° , possible space group P21 (no.4), the non‐centrosymmetry was proved using powder SHG.  相似文献   

3.
The boron sillenite, up to now known as the 12:1 compound Bi24B2O39 in the system Bi2O3 – B2O3 andcrystallizing in the space group I23, melts incongruently at 655 °C only about 25 K above the eutectic tie line and corresponding to a steep liquidus line. Single crystals with dimensions larger then 1 cm 3 have been successfully grown in [100], [110], and [111] direction by an improved Top Seeded Solution Growth (TSSG) technique equipped with crucible weighing, accelerated crystal rotation technique and air‐cooled pulling rod. The structure of the boron sillenite was analyzed by X‐ray diffraction method, which was possible due to the high crystalline quality achieved. A defect‐free sublattice corresponding to a Bi‐O framework is isostructural with all sillenites, but a 2 Å environment around the origin is occupied by different cations with different population coefficients. The best calculation results in the formula Bi24.5BO38.25 which is more Bi‐rich than the 12:1 assumption.  相似文献   

4.
The current work reports the fabrication of crystalline Bi2O3 nanorods on Pt‐coated Si substrates using trimethylbismuth and O2 as the bismuth and the oxygen sources, respectively, in the metalorganic chemical vapor deposition process. Their microstructures were characterized by scanning electron microscopy, X‐ray diffraction, and transmission electron microscopy. The obtained nanorods were crystalline, with their diameters in the range of 20–200 nm. The absence of tip‐nanoparticle and the presence of predeposited Bi2O3 layer indicated that the growth was dominated by a vapor‐solid process. The photoluminescence measurements of the Bi2O3 nanorods at room temperature exhibited an emission band peaked at around 422 nm. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Diameter self‐control was established in Bi4Ge3O12 fiber crystal growth by micro‐pulling‐down technique. In accordance with Bi2O3‐GeO2 phase diagram, the diameter was controlled due to compensation of solidification with evaporation of volatile Bi2O3 self‐flux charged into the crucible with excess. The crucibles had capillary channels of 310 or 650 μm in outer diameter. The crystals up to 400 mm long and 50‐300 μm in diameter were grown at pulling‐down rates of 0.04‐1.00 mm/min. The melt composition and the pulling rate were generally only two parameters determining solidification rate. As a result, crystals with uniform (± 10%) diameter and aspect ratio up to 104 were produced without automation of the process. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
In the binary system Bi2O3 – B2O3 glasses were prepared in the composition range 57.5 mol% ‐ 80 mol% B2O3 by defined slow cooling of large melt samples (about 75 cm3, each). Temperatures of crystallization, of melting and of glass transition were determined and density data of the glasses were derived using the hydrostatic weighting method. Thermal expansion coefficients and high precision refractive indices, together with their dispersion, were measured. The measured physical properties indicate subtle discontinuous structural changes of the glasses with glass composition, that match with the ranges of existence of the crystalline compounds of the binary system Bi2O3 – B2O3. Thermal investigations together with X‐ray powder diffraction analyses of crystallized glass samples prove the so far doubtful existence of a borate compound named “BiBO3” in the PDF within the composition range 52.5 – 57.5 mol% B2O3.  相似文献   

7.
The nonlinear optical (NLO) properties of Bi2O2(OH)(NO3) crystals have been reported for the first time. Bi2O2(OH)(NO3) crystals with dimensions of 1.3×1.2×0.1 mm3 have been grown by hydrothermal method, and the crystals characterized by X‐ray powder diffraction (XRD), SEM and IR. The measured second harmonic generation (SHG) effect of Bi2O2(OH)(NO3) was about 7 times that of KDP. The mechanism responsible for the large SHG of Bi2O2(OH)(NO3) was explained according to its structure. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
The Sillenite type Bi24B2O39 is an incongruently melting compound at Tp = 650 °C. Single crystals have been grown from non-stoichiometric melts as well as from high temperature solutions by the Czochralski method and by a top seeded solution growth technique (TSSG), respectively. The main difficulty in the crystal growth of Bi24B2O39 arises from the very small field of crystallization in the binary system Bi2O3–B2O3. Further problems are caused by the nearly simultaneous formation of the 2:1 compound Bi4B2O9 and the 12:1 compound Bi24B2O39. Therefore, a precise thermal reinvestigation of the phase diagram was carried out using DTA-technique on the Bi2O3-rich side. Additionally, crystal growth runs have been started in the ternary system Bi2O3–B2O3–Li2O in order to extend the crystallization field. Homogeneous melts were more difficult to prepare because of the high density difference between Bi2O3 (∂ = 9.3 g/cm3) and B2O3 (∂ = 2.46 g/cm3). The homogeneity of the melts were improved, using Bi2O3 and synthesized Bi4B2O9 (∂ = 8.25 g/cm3) as starting materials. As a result of this procedure, small crystals of Bi24B2O39 were grown from these starting materials and the lattice parameter were determined.  相似文献   

9.
α-Bi2B8O15 crystals (5-to 7-mm-thick, 2.7 × 2.7 cm2 in cross section) have been grown by the Czochralski method from a melt of stoichiometric (Bi2O3: B2O3 = 20: 80) and nonstoichiometric (Bi2O3: B2O3 = 21.9: 78.1) compositions. It is established that there is a solid-solution range from 78.1 to 84.7 mol % B2O3 for α-Bi2B8O15. The structure of a Bi2(B8O15)(Bi2O3)0.06 crystal, which was grown from a melt of nonstoichiometric composition and is an interstitial solid solution, has been refined (sp. gr. P21).  相似文献   

10.
The vibrational spectra of crystals of bismuth borates Bi24B2O39, Bi4B2O9, BiBO3, and Bi2B8O15 were obtained for the first time, and the spectra of Bi3B5O12 and BiB3O6 crystals measured in the range 30–1600 cm?1 at room temperature were refined. The lines observed were assigned to the corresponding vibrational transitions on the basis of the theoretical group analysis and comparison of the obtained results with the vibrational spectra of borates of different composition. The complication of the structure of bismuth borates with increasing content of B2O3 was traced by the example of vibrational spectra.  相似文献   

11.
Single crystalline strontium chloroborate (Sr2B5O9Cl) whiskers with uniform diameter have been synthesized by a facile route based on the calcination of precursor. The precursor was prepared by the sedimentation reaction between SrCl2 and Na2B4O7 aqueous solution. The products were characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared spectrum (FT‐IR). An optimal synthesis temperature for preparing Sr2B5O9Cl whiskers was obtained, and the possible formation process was also presented.  相似文献   

12.
Glasses of the system: xBi2O3-(100−x)B2O3 (x = 20 to 66 mol%) were prepared and characterized by density, DSC, UV-visible absorption and 11B MAS-NMR spectroscopy. Glass molar volume increases while the glass transition temperature decreases with Bi2O3 concentration. Densities of some bismuth borate glasses are found to be greater or very close to those of single crystal phases with equal composition. B11 MAS-NMR studies determined that the fraction of tetrahedrally coordinated borons (N4) is maximum at 42 mol% of Bi2O3 and that there is a local maxima in N4 at Bi2O3 concentration of 50 mol%. Glasses containing Bi2O3 concentration of 33 mol% and higher show an unusual, intense absorption band just below the optical band gap. Two crystalline phases: Bi3B5O12 and Bi4B2O9 were prepared by devitrification of glasses and characterized by X-ray diffraction, FTIR and 11B MAS-NMR studies. Both crystalline phases contained significantly lower N4 than glasses with equal composition.  相似文献   

13.
Recrystallization of natural chrysoberyl in multicomponent melts   总被引:1,自引:0,他引:1  
Chrysoberyl and alexandrite crystals have been grown from solutions in melts based on the Li2CO3-MoO3, Bi2O3-MoO3, PbO-V2O5, Na2B4O7, and K2MoO4-MoO3 systems using natural alexandrite and chrysoberyl debris as the initial BeAl2O4 compound. An analysis of the morphology and homogeneity of the crystals grown has revealed the Bi2O3-MoO3 solvent to be the most appropriate. The optimal color characteristics (??quality?? of alexandrite effect) manifest themselves when adding about 5 mol % Cr2O3. The largest crystals (up to 10 mm in size) were obtained from a solution in melt based on PbO-V2O5 at a ratio of the crystal-forming component to the solvent of 9: 91 wt %; These characteristics, along with a relatively low operating temperature (970°C), give grounds to consider this type of solvent promising.  相似文献   

14.
The liquidus surface structure and field of LiB3O5 (LBO) primary crystallization have been revealed in Li2O‐B2O3 ‐MoO3 ternary system. The optimization of charge composition and growth conditions results in large volume optical quality LBO single crystals yielding. Crystallographic properties and real defect structure of grown LBO single crystals have been investigated by X‐ray powder diffraction method and X‐ray reflection topography. The volume of the crystals is partly free of any structural imperfections.  相似文献   

15.
Different contents of Y‐doped Bi2WO6 crystallites were synthesized by a microwave‐hydrothermal method. The photocatalytic properties with different contents of Y‐doped Bi2WO6 crystallites were studied. The Y‐doped Bi2WO6 crystallites were also characterized by XRD, EDX, SEM and UV‐vis DRS and the multi‐factors on photocatalytic properties of Y‐Doped Bi2WO6 crystallites were discussed. The results indicate that Y3+ replacing Bi3+ enters into the Bi2WO6 lattice, producing a degree of Bi2WO6 lattice distortion. It also has an impact on the crystallinity of Bi2WO6 and the band gap is from 2.49 eV to 2.71 eV. The photocatalytic results show that when the content of Y doping becomes 10%, the degradation rate of rhodamine B is above 90% after 40 min irradiation, which shows that doping the proper rare earth ions is conducive to the photocatalytic properties of Bi2WO6 crystallites.  相似文献   

16.
Large and high‐quality single crystals of both Pb‐free and Pb‐doped high temperature superconducting compounds (Bi1‐xPbx)2Sr2Ca2Cu3O10‐y (x = 0 and 0.3) were grown by means of a newly developed “Vapour‐Assisted Travelling Floating Zone” technique (VA‐TSFZ). This modified zone‐melting technique was realised in an image furnace and allowed for the first time to grow Pb‐doped crystals by compensating for the Pb losses occurring at high temperature. Crystals up to 3×2×0.1 mm3 were successfully grown. Post‐annealing under high pressure of O2 (up to 10 MPa at T = 500°C) was undertaken to enhance Tc and improve the homogeneity of the crystals. Structural characterisation was performed by single‐crystal X‐ray diffraction (XRD) and the structure of the 3‐layer Bi‐based superconducting compound was refined for the first time. Structure refinement showed an incommensurate superlattice in the Pb‐free crystals. The space group is orthorhombic, A2aa, with cell parameters a = 27.105(4) Å, b = 5.4133(6) Å and c = 37.009(7) Å. Superconducting studies were carried out by A.C. and D.C. magnetic measurements. Very sharp superconducting transitions were obtained in both kinds of crystals (ΔTc ≤ 1 K). In optimally doped Pb‐free crystals, critical temperatures up to 111 K were measured. Magnetic critical current densities of 2�105 A/cm2 were measured at T = 30 K and μ0H = 0 T. A weak second peak in the magnetisation loops was observed in the temperature range 40‐50 K above which the vortex lattice becomes entangled. We have measured a portion of the irreversibility line (0.1‐5 Tesla) and fitted the expression for the melting of a vortex glass in a 2D fluctuation regime to the experimental data. Measurements of the lower critical field allowed to obtain the dependence of the penetration depth on temperature: the linear dependence of λ(T) for T < 30 K is consistent with d‐wave superconductivity in Bi‐2223. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Oxygen-containing germanium (Ge) single crystals with low density of grown-in dislocations were grown by the Czochralski (CZ) technique from a Ge melt, both with and without a covering by boron oxide (B2O3) liquid. Interstitially dissolved oxygen concentrations in the crystals were determined by the absorption peak at 855 cm−1 in the infrared absorption spectra at room temperature. It was found that oxygen concentration in a Ge crystal grown from melt partially or fully covered with B2O3 liquid was about 1016 cm−3 and was almost the same as that in a Ge crystal grown without B2O3. Oxygen concentration in a Ge crystal was enhanced to be greater than 1017 cm−3 by growing a crystal from a melt fully covered with B2O3; with the addition of germanium oxide powder, the maximum oxygen concentration achieved was 5.5×1017 cm−3. The effective segregation coefficients of oxygen in the present Ge crystal growth were roughly estimated to be between 1.0 and 1.4.  相似文献   

18.
Amorphous Bi4Ge3O12 glass samples were produced by melt quenching procedure stating with Bi4Ge3O12 (BGO) powder, obtained by solid state reaction between oxides. The kinetics of non-isothermal crystallization of BGO nano-crystals has been investigated. Differential Thermal Analysis (DTA) can give the main parameters of crystallization with an exothermic peak from 813 K to 851 K depending on the heating rate, which was assigned to the crystallization of cubic BGO in the amorphous matrix and compared with the X-Ray Diffraction (XRD) patterns. The nano-crystal dimensions were calculated from the XRD patterns by using the Debye–Scherrer method and were compared with Transmission Electron Microscopy (TEM) images. It was shown that the Ozawa model is most suitable for describing the behavior of non-isothermal crystallization of BGO nano-crystals within the glass matrix. Experimental results suggest a disk-shape type growth mechanism for the Bi4Ge3O12 nano-crystallites. The Flynn–Wall–Ozawa method has shown that the average activated energy value is 385 ± 14 kJ/mol which was computed within the same model and agrees very well with the activation energy of the crystallization.  相似文献   

19.
The effect of the substitution of ZnO for TiO2 on the chemical durability of Bi2O3–SiO2–ZnO–B2O3 glass coatings in hot acidic medium (0.1 N H2SO4 at 80 °C) for different times was studied. The thick films produced by a screen-printing method and heat treated at 700 °C/5 min were analyzed by X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy. The glass from the Bi2O3–SiO2–ZnO–B2O3 system developed Zn2SiO4 and a glassy phase that were readily attacked by hot 0.1 N sulfuric acid, whereas the heat treated coating from the Bi2O3–SiO2–TiO2–ZnO–B2O3 system presented a finer microstructure with thin interconnected Bi4Ti3O12 crystals and a glassy phase more resistant to hot 0.1 N sulfuric acid attack etching.  相似文献   

20.
Mullite‐type Bi2Ga4O9 single‐crystals were grown by the top‐seeded solution growth (TSSG) method and investigated by vibrational spectroscopy. Polarised IR specular reflectance and attenuated total reflectance (ATR) spectra, as well as polarised micro‐Raman spectra were acquired at room temperature. Powder IR spectra of sol‐gel‐derived samples were also recorded. Using model calculations and comparison to other mullite‐type compounds, bands at ∼ 850 – 400 cm‐1 could be assigned to stretching and bending vibrations of the structural GaO4 and GaO6 units. Low‐energetic modes were attributed to motions involving Bi atoms. The IR spectra of Bi2Ga4O9 display close similarities to those of the mullite‐type alkali gallates (9Ga2O3 · Rb2O), while their differences to those of mullite sensu stricto (3Al2O3 · 2SiO2 and 2Al2O3 · SiO2, repectively) are assigned to Si‐O stretching vibrations of the corresponding tetrahedral units. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号