首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mg‐doped ZnO (MgxZn1‐xO) nanoparticles with precise stoichiometry are synthesized through polyacrylamide polymer method. Calcination of the polymer precursor at 650 °C gives particles of the homogeneous solid solution of the (MgxZn1‐xO) system in the composition range (x < 0.15). ZnO doping with Mg causes shrinkage of lattice parameter c. The synthesized MgxZn1‐xO nanoparticles are typically with the diameter of 70–85 nm. Blue shift of band gap with the Mg‐content is demonstrated, and photoluminescence (PL) from ZnO has been found to be tunable in a wide range from green to blue through Mg doping. The blue‐related PL therefore appeared to be caused by energetic shifts of the valence band and/or the conduction band of ZnO. MgxZn1‐xO nanoparticles synthesized by polyacrylamide‐gel method after modified by polyethylene glycol surfactant have a remarkable improvement of stability in the ethanol solvent, indicating that these MZO nanoparticles could be considered as the candidate for the application of solution–processed technologies for optoelectronics at ambient temperature conditions.  相似文献   

2.
Nd‐doped ZnO nanoparticles with different concentration were synthesized by sol‐gel method. The structures, magnetic and optical properties of as‐synthesized nanorods were investigated. X‐ray diffraction (XRD) and x‐ray photoelectron spectroscopy (XPS) results demonstrated that Nd ions were incorporated into ZnO lattice; but Zn1‐xNdxO nanoparticles with Nd concentration of x = 0.05 showed Nd2O3 phase, so the saturation concentration of Nd in Zn1‐xNdxO is less than 5 at%. Vibrating sample magnetometer (VSM) measurements indicated that Nd doped ZnO possessed dilute ferromagnetis behaviour at room temperature. Photoluminescence spectroscopy (PL) showed that Nd ions doping induced a red slight shift and decrease in UV emission with increase of Nd concentration.  相似文献   

3.
MgxZn1?xO has been used in various photovoltaic cells because its energy bandgap can be tailored by controlling the Mg composition in this ternary compound. The MgxZn1?xO layers with different surface morphologies including two-dimensional (2-D) films and one-dimensional (1-D) nanostructures are preferred for conventional p–n junction solar cells and polymer–inorganic hybrid solar cells, respectively. The MgxZn1?xO layers are sequentially grown on Ga-doped ZnO (GZO) transparent conductive electrode using metalorganic chemical vapor deposition (MOCVD). The effect of the buffer layers on MgxZn1?xO surface morphology is investigated. It is observed that MgxZn1?xO deposited at ~500 °C on a low-temperature (~250 °C) ZnO buffer layer is in the form of 2-D dense and smooth films, whereas, on a high-temperature (~520 °C) ZnO buffer layer is in the form of 1-D nanostructures. Based on the structure characterization results, a growth mechanism in terms of nucleation and texturing is proposed to explain the buffer layer effect.  相似文献   

4.
Spectroscopic ellipsometry in the infrared spectral range 250‐5000 cm‐1 is used for analysis of the dielectric response of Zn1‐x‐yBexMgySe and Zn1‐x‐yBexMnySe crystals grown by a high‐pressure Bridgman method. Ellipsometric spectra display features in the spectral range 390‐500 cm‐1 associated with BeSe‐type phonon modes. In the optical spectra of Zn1‐x‐yBexMgySe crystals both BeSe‐type and MgSe‐type lattice absorption bands are detected. The MgSe‐like modes are located at approximately 300 cm‐1. The complex dielectric functions can be reproduced using a model with two or three and one or two classical damped oscillators corresponding to the BeSe‐like and the MgSe‐like transverse‐optical phonon modes, respectively. The frequencies of longitudinal‐optical phonons have been derived from the dielectric loss functions. A red‐shift of the BeSe‐like phonons frequencies with a mean rate 0.42 cm‐1 (0.50 cm‐1) per mole percent of Mg (Mn) incorporated to the alloy has been found for examined concentration range x, y ≤ 0.25. A noticeable damping the intensities of BeSe‐type modes with increasing fraction of Mg and Mn dopant is observed in comparison to the strengths of BeSe‐type modes in Zn1‐xBexSe crystals. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Vanadium (V) doped ZnO thin films (Zn1‐xVx O, where x = 0, 0.05, 0.10) have been grown on sapphire substrates by RF magnetron sputtering to realize room temperature ferromagnetism (RTFM). The grown films have been subjected to X‐ray diffraction (XRD), resonant Raman scattering, photoluminescence (PL) and vibrating sample magnetometer (VSM) measurements to investigate their structural, optical and magnetic properties, respectively. The full width at half maximum of XRD and Raman scattering peaks increases with V ion concentration indicates that the V ions have been substituted on Zn2+ ions in the ZnO matrix. The increase in oxygen vacancies with V concentration is evidenced by PL measurements. Rutherford backscattering spectrometry analysis confirms the presence of the V ions in the films. The room temperature VSM measurements reveal the signature of ferromagnetism in V doped ZnO thin films. It has been observed that the grain boundary defects, i.e., oxygen vacancies play a crucial role in inducing RTFM in V doped ZnO films. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
The mixed oxides Zn1‐xMgxO (ZMO) were prepared as nano‐polycrystalline powders and thin films by a simple sol–gel process and dip coating method. Thermogravimetric (TG) and differential thermal analysis (DTA) were used to study the thermal chemistry properties of dried gel. Structural and microstructural analysis was carried out applying x‐ray diffraction (XRD) and Rietveld method. Analysis showed that for x < 0.25, Mg replaces Zn substitutionally yielding ZMO single phase, while for x ≥ 0.25 two phases are identified ZMO and MgO. Replacing Zn2+ by Mg2+ distorts the cation tetrahedrons and decreases the lattice constants ratio c/a of the wurtzite ZMO which deviate the lattice gradually from the hexagonal structure as Mg+2 increases. These distortions are attributed to the difference in electronic configuration of the two cations which suppress the paraelectric‐ferroelectric phase transition in the ZMO wurtzite. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
High-quality ZnMgO films were grown by the radio frequency (RF) magnetron sputtering technique in pure oxygen ambient. Single-crystal films were obtained, when the Mg concentration was Zn0.87Mg0.13O or lower in the case of ZnMgO/Al2O3 and when it was Zn0.65Mg0.35O or lower in the case of ZnMgO/ZnO. Polycrystalline films were obtained when the growth temperature was lower than 500 °C, regardless of the Mg concentration. Position of the photoluminescence (PL) ultraviolet (UV) peak of the ZnMgO film shifted with the addition of Mg, from 3.33 eV (ZnO) to 3.51 eV (Zn0.87Mg0.13O) and 3.70 eV (Zn0.65Mg0.35O). It was also observed that growth of the ZnMgO films at higher temperature resulted in higher band-gap energy. It was proposed that this phenomenon is because concentration of the substitutional Mg atoms occupying Zn site is increased as the growth temperature increases.  相似文献   

8.
In this study, the effect of Mg substitution on structural, magnetic and electrical properties of La0.75Sr0.25Mn1?xMgxO3 and La0.75Sr0.25?xMgxMnO3 (nominal compositions) samples are investigated by XRD, Ac susceptibility and electrical resistivity measurements. It is found that Mg does not replace La in the perovskite lattice. Also the results show that by increasing Mg doping levels, the paramagnetic–ferromagnetic and metal–insulator transition temperatures decrease. The reason for decreasing transition temperatures with increasing Mg concentration is, that the long-range FM order has been destroyed by the Mg, which is randomly occupying Mn site. This leads to the suppression of double-exchange interaction in the Mn3+–O–Mn4+ networks. Also the reentrant spin glass (RSG) state accompanied by FM transition, exists in high doped samples. The RSG state could be understood on the basis of double exchange ferromagnetic interaction in Mn3+–O–Mn4+ and super-exchange antiferromagnetic interaction in the Mn4+–O–Mn4+ networks.  相似文献   

9.
Zn1‐xCux O powders were synthesized by using sol‐gel method. Electronic band structure and ferromagnetic properties of Zn1‐xCux O powders were studied experimentally and theoretically. The simulations are based upon the Perdew‐Burke‐Ernzerhof form of generalized gradient approximation within the density functional theory. Zn1‐xCux O shows dilute ferromagnetism, as a saturated magnetization of 0.9×10‐3emu/g was observed for Zn0.95Cu0.05O powders. The strong pd hybridization between Cu and its four neighbouring O atoms is responsible for the ferromagnetism. Comparing with ZnO whose Fermi level locates at the valence band maximum, the Fermi level of the Zn1‐xCux O shifts upward into the valence band and hence the Zn1‐xCux O system exhibits theoretically a p ‐type metallic semiconducting property. The Zn1‐xCux O system may be a potential candidate in spintronics. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
We report the structural and optical properties of wurtzite-structure Zn(Mg,Cd)O ternary alloys. Wurtzite (0 0 0 1) Zn1−xCdxO and MgyZn1−yO films were grown on (11–20) sapphire substrates using remote-plasma-enhanced metalorganic chemical vapor deposition. The large bowing parameters of Zn1−xCdxO and MgyZn1−yO ternary alloys are 3.0 and 3.5, respectively, which reflects the large difference of each binary’s electronegativity. We have analyzed the broadening of photoluminescence (PL) in Zn(Mg,Cd)O alloys on alloy content by taking into account the statistical alloy fluctuation and the localization of the exciton, and have clarified that the localization of the exciton strongly affects to PL full-width at half-maximum (FWHM) in Zn(Mg,Cd)O alloys. The alloy broadenings in steady-state PL of Zn(Mg,Cd)O alloys are in good agreement with the calculated tendency by the theoretical model based on the statistical alloy fluctuation, while PL FWHM of Zn1−xCdxO is three times larger than the calculated results. Moreover, as another way to confirm alloy broadening, we also have done time-resolved PL measurements and derived the localized depth of the exciton in ZnO-based system, indicating a good agreement with the tendency of PL FWHM broadening.  相似文献   

11.
Series of mixed valence monophosphates AFe3‐xMgx(PO4)3 [A = Sr(x = 0), Ba(x = 0.6), Pb(x = 0.6)] were synthesized by mild hydrothermal treatment at 210 °C. Refinements of single crystal X‐ray diffraction datas show all these compounds are isostructural. The attempts to make AFe3(PO4)3 (A = Ba, Pb) hydrothermally in the experiment were unsuccessful. However, the Mg‐doped homologues AFe2.4Mg0.6(PO4)3 (A = Ba, Pb) were synthesized with the addition of MgCO3 in the reactants as mineralizer. EDS and single crystal X‐ray data refinement indicated that the Mg2+ cations were doped in the Fe2+ sites of AFe2.4Mg0.6(PO4)3 (A = Ba, Pb). The influence of the Mg‐doping on the structure and the reason why the Mg doped in the Fe(II) site instead of A site was discussed from the point of view of the bond valence model.  相似文献   

12.
Zn1‐xCdxO layers were deposited on the sapphire substrate using the radio‐frequency magnetron co‐sputtering system. The grown Zn1‐xCdxO layers were carried out in the post‐annealing treatment for 1 min at the 800 °C oxygen‐ambient by the rapid thermal annealing (RTA) method. X‐ray diffraction (XRD) experiment shows that the Zn1‐xCdxO layers are changed from the single phase of the hexagonal structure at 0≤x ≤0.08 to the double phase of hexagonal‐and‐cubic structure at x =0.13. Thus, the maximum Cd‐composition ratio with the hexagonal structure was found out to be x =0.08. Also, the crystallinity of Zn1‐xCdxO layers at x =0.13 was remarkably improved by the RTA annealing treatment. This crystal quality improvement was thought to be associated with the relaxation of the compressive strain remaining in the Zn1‐xCdxO layers. Therefore, the results of XRD and transmittance lead that the crystal quality of the Zn1‐xCdxO layers forming the hexagonal ZnO phase is better than that forming the cubic CdO phase. Consequently, the reliable formation and the crystallinity of the Zn1‐xCdxO layers were achieved by using the RTA method of short‐time thermal‐annealing at the high temperature. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Mn‐doped ZnO were synthesized by solid state reaction and sol‐gel method respectively. It was found that samples synthesized by solid state reaction containing Mn2O3 and MnO2 are a mixture of ferromagnetic and paramagnetic phases. Contrary, samples without second phases were found to be paramagnetic at room temperature. According to previous report, interface effects between Zn‐rich Mn2O3 and MnO2 interfaces may be the origin of the ferromagnetic behavior observed in our samples prepared by solid reaction, so the alloy of Zn1−xMnxO may be paramagnetic at room temperature. Prepared by sol‐gel technique, the samples without second phases in the XRD patterns are also room‐temperature paramagnetic. Therefore we believe that the magnetism of Zn1−xMnxO is paramagnetic at room temperature. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
MgxZn1?xO thin films were deposited on quartz substrates by RF magnetron sputtering. The effect of post-annealing temperature on structural, optical, and electrical properties was investigated with the annealing temperatures increasing from 450 to 750 °C. The crystallinity of MgxZn1?xO film annealed at 650 °C was significantly improved while the film annealed at 750 °C showed little improvement. The electrical properties degraded with the increase of annealing temperature. The annealing temperature seemed to impact the Eg value of MgxZn1?xO thin films because of the variation of carrier concentration.  相似文献   

15.
BexZn1‐xO nanorod arrays with high crystalline quality were fabricated on Si substrate by a simple, low‐cost hydrothermal method. The effect of Be‐corporation on the structure, morphology and optical property of ZnO nanorod arrays was investigated. The diameter of BexZn1‐xO nanorods gradually decreased and the length of them increased with increasing Be concentration. Edge emissions of the BexZn1‐xO nanorods show a obvious blue shift upon the increase of the Be content.  相似文献   

16.
Zn1?xMnxO nanocrystal samples have been successfully synthesized using the chemical precipitation method in aqueous solution. Comparing with pure ZnO NC, the Raman data recorded from the manganese-doped nanocrystals shows an enhancement of the peaks located at 334 and 439 cm?1. Besides, a new feature at 659 cm?1 emerges. X-ray diffraction (XRD) of the as-precipitated nanocrystal samples illustrates that Mn-doping only makes the XRD peaks of the as-precipitated Mn-doped nanocrystals shift towards lower angle values, but the crystal structure of bulk ZnO is still preserved in the Mn-doped samples. Hence, the high quality Zn1?xMnxO (x ? 0) nanocrystals are formed through the replacement of zinc ions by manganese ions.  相似文献   

17.
Mn substituted ZnO nanocrystals synthesized by a co‐precipitation method. X‐ray diffraction (XRD) studies confirms the presence of wurtzite (hexagonal) crystal structure similar to un doped ZnO, suggesting that doped Mn ions go at the regular Zn sites. The lattice parameters a and c are increasing with increasing Mn content. The unit cell volume increases with increasing Mn concentration, indicating the homogeneous substitution of Mn2+ for the Zn2+. The lattice distortion parameter (εv) is evaluated from XRD data and found that it enhances as Mn content increases. Transmission electron microscopy photographs show that the size of the ZnO crystals is in the range of 20‐50 nm. The SAED pattern confirms the hexagonal and crystalline nature of the samples which are in agreement with X‐ray analysis. The chemical groups of the samples have been identified by FTIR studies (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
A route for synthesizing high Mg content single-phase wurtzite MgZnO films having band gaps in the solar-blind region is demonstrated by employing molecular beam epitaxy on Al2O3 substrates. Importantly, a low Mg content “quasi-homo” buffer, Mg0.17Zn0.83O, was applied to accommodate a host of structural discrepancies and therefore, avoiding phase separation in a high Mg content film, Mg0.55Zn0.45O, as proved by X-ray diffraction. The Mg fraction in the overgrown single-phase epilayer, Mg0.55Zn0.45O, was confirmed by Rutherford backscattering spectrometry.  相似文献   

19.
The bulk samples of Mn‐doped ZnO were synthesized with the nominal compositions Zn1‐xMnxO (x = 0.02, 0.05, 0.10, 0.15) by the solid‐state reaction and sol‐gel methods. In both the methods the samples were finally sintered at ∼700 °C in air. The X‐ray diffraction (XRD) studies of the samples synthesized by the solid‐state reaction method exhibit the presence of wurtzite (hexagonal) crystal structure similar to the parent compound (ZnO) in all the samples, suggesting that doped Mn ions sit at the regular Zn sites. However, same studies spread over the samples with Mn content ≥5% and synthesized by the sol‐gel method reveal the occurrence of some secondary phase in addition to the majority wurtzite phase. The magnetic measurements by vibrating sample magnetometer (VSM) clearly indicate ferromagnetic interaction at room temperature in all the samples. The Curie temperatures (Tc) and magnetization vary with concentration of Mn ions in the samples. However, the samples synthesized by sol‐gel method were found to have lower Tc values and also lower magnetization as compared to the corresponding samples synthesized by solid‐state reaction method. It could possibly be due to the presence of antiferromagnetic islands and smaller crystallite sizes in the samples prepared by sol‐gel method. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Mg:Ru:Fe:LiNbO3 crystals with various doping concentration of MgO have been grown by Czochralski method. The type of charge carriers and photorefractive properties in Mg:Ru:Fe:LiNbO3 crystals were measured by two‐wave coupling method using Kr+ laser (476 nm) and He‐Ne laser (633 nm) as light sources. We found that holes were the dominant charge carriers under blue light irradiation while electrons were the dominant charge carriers under red light irradiation. Mg2+ ions behaved no longer as damage resistant, but promoter to the photorefractive properties at 476 nm wavelength. The photorefractive properties under blue light improved with the increase concentration of Mg2+ ions. The enhancement mechanisms of the blue photorefractive were suggested. Experimental results definitely showed that Mg‐doped two‐centre Ru:Fe:LiNbO3 was a promising blue photorefraction material for holographic volume storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号