首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We measured the Raman spectra of ZnO nanoparticles (ZnO‐NPs), as well as transition‐metal‐doped (5% Mn(II), Fe(II) or Co(II)) ZnO nanoparticles, with an average size of 9 nm. A typical Raman peak at 436 cm−1 is observed in the ZnO‐NPs, whereas Zn1−xMnxO, Zn1−xFexO and Zn1−xCoxO presented characteristic peaks at 661, 665 and 675 cm−1, respectively. These peaks can be related to the formation of Mn3O4, Fe3O4 and Co3O4 species in the doped ZnO‐NPs. Moreover, these samples were analyzed at various laser powers. Here, we observed new vibrational modes (512, 571 and 528 cm−1), which are specific to Mn, Fe and Co dopants, respectively, and ZnO‐NPs did not reveal any additional modes. The new peaks were interpreted either as disorder activated phonon modes or as local vibrations of Mn‐, Fe‐ and Co‐related complexes in ZnO. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
We present X‐ray diffraction and Raman spectroscopy studies of Ni‐doped ZnO (Zn1−xNixO, x = 0.0, 0.03, 0.06, and 0.10) ceramics prepared by solid‐state reaction technique. The presence of the secondary phase along with the wurtzite phase is observed in Ni‐doped ZnO samples. The E2(low) optical phonon mode is seen to be shifted to a lower wavenumber with Ni incorporation in ZnO and is explained on the basis of force‐constant variation of ZnO bond with Ni incorporation. A zone boundary phonon is observed in Ni‐doped samples at ∼130 cm−1 which is normally forbidden in the first‐order Raman scattering of ZnO. Antiferromagnetic ordering between Ni atoms via spin‐orbit mechanism at low temperatures (100 K) is held responsible for the observed zone boundary phonon. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
The room‐temperature ferromagnetism and the Raman spectroscopy of the Cu‐doped Zn1−xCoxO powders prepared by the sol–gel method are reported. The x‐ray diffraction (XRD) data confirmed that the wurtzite structure of ZnO is maintained for ZnO doped with Co below 10 at%. The magnetization–field curves measured at room temperature demonstrated that all Co‐doped ZnO powders were paramagnetic. Ferromagnetic ordering is observed for the samples doped with Cu in Zn0.98Co0.02O and strongly depends on the concentration of Cu. The relative strength of the second‐order LO peak to the first‐order one in the Raman spectra, which is related to the carrier concentration, of the Cu‐doped Zn0.98Co0.02O powder is strongly correlated with the saturation magnetic moment of the system. This seems to be in favor of the Ruderman‐Kittel‐Kasuya‐Yosida (RKKY) or double exchange mechanism of the ferromagnetism in this system. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Insight into the unique structure of hydrotalcites (HTs) has been obtained using Raman spectroscopy. Gallium‐containing HTs of formula Zn4 Ga2(CO3)(OH)12 · xH2O (2:1 ZnGa‐HT), Zn6 Ga2(CO3)(OH)16 · xH2O (3:1 ZnGa‐HT) and Zn8 Ga2(CO3)(OH)18 · xH2O (4:1 ZnGa‐HT) have been successfully synthesised and characterised by X‐ray diffraction (XRD) and Raman spectroscopy. The d(003) spacing varies from 7.62 Å for the 2:1 ZnGa‐HT to 7.64 Å for the 3:1 ZnGa‐HT. The 4:1 ZnGa‐HT showed a decrease in the d(003) spacing, compared to the 2:1 and 3:1 compounds. Raman spectroscopy complemented with selected infrared data has been used to characterise the synthesised gallium‐containing HTs. Raman bands observed at around 1050, 1060 and 1067 cm−1 are attributed to the symmetric stretching modes of the (CO32−) units. Multiple ν3 (CO32−) antisymmetric stretching modes are found between 1350 and 1520 cm−1, confirming multiple carbonate species in the HT structure. The splitting of this mode indicates that the carbonate anion is in a perturbed state. Raman bands observed at 710 and 717 cm−1 and assigned to the ν4 (CO32−) modes support the concept of multiple carbonate species in the interlayer. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Surface acoustic wave (SAW) filters based on Mn‐doped ZnO films have been fabricated and effects of Mn‐doping on SAW properties are investigated. It is found that the electromechanical coupling coefficient (K2) of Zn0.913Mn0.087O films is 0.73 ± 0.02%, which is 73.8% larger than that of undoped ZnO films (0.42 ± 0.02%). Zn0.913Mn0.087O film filters also exhibit a lower absolute value of insertion loss (|IL|) of 16.1 dB and larger bandwidth (BW) of 5.9 MHz compared with that of undoped ZnO film filter. However, Zn0.952Mn0.048O film filters exhibit a smaller K2 of 0.34 ± 0.02%, larger |IL| of 26.9 dB and smaller BW of 3.5 MHz. It is suggested that the SAW properties can be improved by appropriate Mn‐doping and Mn–ZnO/Si multilayer structure with large d33 is promising for wide‐band and low‐loss SAW applications. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
The self‐regenerative property of LaCo1–xyPdx Zny O3±δ and LaFe1–xyPdx Zny O3±δ solid solutions with monometallic Pd or bimetallic Pd/Zn substituents for Co or Fe is studied under a redox cycle by high angular annular dark‐field scanning transmission electron microscopy (STEM‐HAADF) and energy dispersive X‐ray spectroscopy (EDX) and X‐ray diffraction (XRD). These results reveal that the composition of perovskites determines the self‐regenerative property that occurs largely in LaCo1–xyPdx Zny O3±δ but is limited greatly in LaFe1–xyPdx Zny O3±δ. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

7.
Crack‐free (100–x) SiO2x SnO2 glass‐ceramic monoliths have been prepared by the sol–gel method obtaining for the first time SnO2 concentrations of 20% with annealing at 1100 °C. Heat‐treatment resulted in the formation and growth of SnO2 nanocrystals within the silica matrices. Combined use of Fourier transform–Raman spectroscopy and in situ high‐temperature X‐Ray diffraction shows that SnO2 particles begin to crystallize in the cassiterite‐type phase at 80 °C and that their average apparent size remains around 7 nm, even after annealing at 1100 °C. Nanocrystal sizes and size distributions determined by low‐wavenumber Raman are in good agreement with those obtained from transmission electron microscopy measurements. Results indicate that the formation and the growth of SnO2 nanocrystals impose a residual porosity in the silica matrix. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
《X射线光谱测定》2006,35(3):165-168
Cd1?xZnxO thin films were prepared by spray pyrolysis in air atmosphere on a glass substrate at 250 °C. The Zn content in Cd1?xZnxO films was varied from x = 0 to 0.60. Structural, electrical and optical properties of Cd1?xZnxO films were investigated by x‐ray diffraction, electrical resistivity and optical transmittance spectra, respectively. As the Zn content in Cd1?xZnxO thin films increased, the preferred orientation of the films did not change, only the peak intensity of the planes decreased. In addition to the peaks of CdO, peaks of ZnO were observed in the film with x = 0.6. The resistivity of Cd1?xZnxO thin films increased with increasing Zn content. Transmittance spectra studies of films were carried out in the 190‐1100 nm wavelength range and the results showed that the bandgap energy range varied from 2.42 to 3.25 eV. In addition, alloying effect on the Kβ/Kα intensity ratio in Cd1?xZnxO semiconductor thin films was studied. It was found that the Kβ/Kα intensity ratio is changed by alloying effects in Cd1?xZnxO semiconductor thin films for different composition of x. The results were compared with the theoretical values. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
A novel high-performance thermistor material based on Co-doped ZnO thin films is presented. The films were deposited by the pulsed laser deposition technique on Si (111) single-crystal substrates. The structural and electronic transport properties were correlated as a function of parameters such as substrate temperature and Co-doped content for Zn1?x Co x O (x=0.005,0.05,0.10 and 0.15) to prepare these films. The Zn1?x Co x O films were deposited at various substrate temperatures between 20 and 280 °C. A value of 20 %/K for the negative temperature coefficient of resistance (TCR) with a wide range near room temperature was obtained. It was found that both TCR vs. temperature behavior and TCR value were strongly affected by cobalt doping level and substrate temperature. In addition, a maximal TCR value of over 20 %?K?1 having a resistivity value of 3.6 Ω?cm was observed in a Zn0.9Co0.1O film near 260 °C, which was deposited at 120 °C and shown to be amorphous by X-ray diffraction. The result proved that the optimal Co concentration could help us to achieve giant TCR in Co-doped ZnO films. Meanwhile, the resistivities of the films ranged from 0.4 to 270 Ω?cm. A Co-doped ZnO/Si film is a strong candidate of thermometric materials for non-cooling and high-performance bolometric applications.  相似文献   

10.
Mn-doped ZnO samples having composition Zn1−xMnxO (x=0.02, 0.04 and 0.05) were synthesized by solid state reaction technique with varying concentration of Mn from 0.02 to 0.05. Evidence of room temperature ferromagnetism was observed only in the composition Zn0.98Mn0.02O sintered at 500 °C. Our XRD pattern confirms the presence of Mn3O4 impurity phase in all the Zn1−xMnxO samples with the exception of Zn0.98Mn0.02O. We emphasize that the appearance of Mn3O4 phase in the system forbids the exchange type of interaction between the Mn ions and suppresses the ferromagnetism in all the Mn over-doped Zn1−xMnxO (x>0.02) system. SEM microstructure study also supports the interruption of exchange type of interaction inside the system with the increase in Mn concentration in the sample. Interestingly, for this particular composition, Zn0.98Mn0.02O sintered at 500 °C, glassy ferromagnetism type of transition is observed at low temperature. This type of transition is attributed to the formation of the oxides of Mn clusters at low temperature.  相似文献   

11.
Quantum dots (3–4?nm) of Zn1? x Cd x S (both free of Mn2+ and with Mn2+ incorporated) were synthesized through a novel solvothermal-microwave irradiation technique. Detailed structural analysis of the Zn1? x Cd x S and Zn1? x Cd x S:Mn2+ (x?=?0, 0.25, 0.5, 0.75 and 1) materials was carried out using powder X-ray diffraction technique. For all the compositions, the crystallite size was controlled to less than 1.5?nm. The optical energy gap for Zn1? x Cd x S was found to vary from 3.878 to 2.519?eV and for Zn1?x Cd x S:Mn2+ it varies from 3.830 to 2.442?eV when x is increased from 0 to 1. Overall, the optical energy gap could be tuned from a minimum of 2.442?eV to a maximum of 3.878?eV. DC conductivity analysis (from 40°C to 150°C) and electrical energy gap analysis for all the compositions were also performed. The dc conductivity for Zn1? x Cd x S solid solutions varies from 0.3840?×?10?10 to 8.7782?×?10?10?mho/m at 150°C and for Zn1? x Cd x S:Mn2+ it varies from 0.5751?×?10?10 to 9.8078?×?10?10 mho /m at 150°C (for x?=?0 to x?=?1). The method of synthesis and the results observed in this investigation may assist in the fabrication of optical devices when the required operational performance falls under the range observed in the study.  相似文献   

12.
LiFe1 − xMnxPO4 olivines are promising material for improved performance of Li‐ion batteries. Spin–phonon coupling of LiFe1 − xMnxPO4 (x = 0, 0.3, 0.5) olivines is studied through temperature‐dependent Raman spectroscopy. Among the observed phonon modes, the external mode at ~263 cm−1 is directly correlated with the motions of magnetic Fe2+/Mn2+ ions. This mode displays anomalous temperature‐dependent behavior near the Néel temperature, indicating a coupling of this mode with spin ordering. As Mn doping increases, the anomalous behavior becomes clearly weaker, indicating the spin–phonon coupling quickly decreases. Our analyses show that the quick decrease of spin–phonon coupling is due to decrease of the strength of spin–phonon coupling, but not change of spin‐ordering feature with Mn doping. Importantly, we suggest that the low electrochemical activity of LiMnPO4 is correlated with the weak spin–phonon coupling strength, but not with the weak ferromagnetic ground state. Our work would play an important role as a guide in improving the performances of future Li‐ion batteries. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Silver nanoparticles were synthesized with a chemical reduction method in the presence of polyvinylpyrrolidone as stabilizing agent. The thermal stability behavior of the silver nanoparticles was studied in the temperature range from 25 to 700°C. Thermal gravimetric analysis was used to measure the weight loss of the silver nanoparticles. Scanning electron microscopy and high‐resolution transmission electron microscopy were used to observe the morphology and the change in shape of the silver nanoparticles. In situ temperature‐dependent small‐angle X‐ray scattering was used to detect the increase in particle size with temperature. In situ temperature‐dependent X‐ray diffraction was used to characterize the increase in nanocrystal size and the thermal expansion coefficient. The results demonstrate that sequential slow and fast Ostward ripening are the main methods of nanoparticle growth at lower temperatures (<500°C), whereas successive random and directional coalescences are the main methods of nanoparticle growth at higher temperatures (>500°C). A four‐stage model can be used to describe the whole sintering process. The thermal expansion coefficient (2.8 × 10?5 K?1) of silver nanoparticles is about 30% larger than that of bulk silver. To our knowledge, the temperature‐driven directional coalescence of silver nanocrystals is reported for the first time. Two possible mechanisms of directional coalescence have been proposed. This study is of importance not only in terms of its fundamental academic interest but also in terms of the thermal stability of silver nanoparticles.  相似文献   

14.
The Raman spectra of sol–gel derived Co‐doped ZnO nanoparticles (NPs) in the spectral range 100–1500 cm−1 were investigated. In the sol–gel method, three different series of Co‐doped ZnO particles, i.e. Zn1−xCoxO (x = 0.05, 0.10, 0.15, and 0.20), were obtained using three different starting precursors, viz. cobalt chloride hexahydrate, cobalt acetate tetrahydrate, and cobalt nitrate hexahydrate, respectively. It has been observed that cobalt acetate is a better precursor in comparison to cobalt chloride and cobalt nitrate to obtain single‐phase Co‐doped ZnO NPs. As for cobalt acetate‐derived NPs, no hidden secondary phase of Co3O4 was observed for the lower (x = 0.05) Co concentration. The Fröhlich interaction associated with the longitudinal modes was found to be destroyed with increasing Co concentration due to structural disorder and defects induced by the dopant. In addition to ZnO and Co3O4 vibrational modes, a few additional modes near 550 and 715 cm−1 were also observed in all cases, which could be attributed to the modes due to Co doping in ZnO. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
The energy‐dependent scintillation intensity of Eu‐doped fluorozirconate glass‐ceramic X‐ray detectors has been investigated in the energy range from 10 to 40 keV. The experiments were performed at the Advanced Photon Source, Argonne National Laboratory, USA. The glass ceramics are based on Eu‐doped fluorozirconate glasses, which were additionally doped with chlorine to initiate the nucleation of BaCl2 nanocrystals therein. The X‐ray excited scintillation is mainly due to the 5d–4f transition of Eu2+ embedded in the BaCl2 nanocrystals; Eu2+ in the glass does not luminesce. Upon appropriate annealing the nanocrystals grow and undergo a phase transition from a hexagonal to an orthorhombic phase of BaCl2. The scintillation intensity is investigated as a function of the X‐ray energy, particle size and structure of the embedded nanocrystals. The scintillation intensity versus X‐ray energy dependence shows that the intensity is inversely proportional to the photoelectric absorption of the material, i.e. the more photoelectric absorption the less scintillation. At 18 and 37.4 keV a significant decrease in the scintillation intensity can be observed; this energy corresponds to the K‐edge of Zr and Ba, respectively. The glass matrix as well as the structure and size of the embedded nanocrystals have an influence on the scintillation properties of the glass ceramics.  相似文献   

16.
We study by X‐ray absorption spectroscopy the local structure around Zn and Ga in solution‐processed In–Ga–Zn–O thin films as a function of thermal annealing. Zn and Ga environments are amorphous up to 450 °C. At 200 °C and 450 °C, the Ga atoms are in a β‐Ga2O3 like structure, mostly tetrahedral gallium oxide phase. Above 300 °C, the Zn atoms are in a tetrahedral ZnO phase for atoms inside the nanoclusters. The observed formation of the inorganic structure above 300 °C may be correlated to the rise of the mobility for IGZO TFTs. The Zn atoms localized at the nanocluster boundary are undercoordinated with O. Such ZnO cluster boundary could be responsible for electronic defect levels. Such defect levels were put in evidence in the upper half of the band gap. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

17.
Nanocrystalline Zn1−xMnxO(x=0−0.1) powders are prepared by polymeric precursor method and their structural and magnetic properties carefully studied. X-ray diffraction studies and Raman spectroscopy reveal that Mn2+ ions have substituted the Zn2+ ion without changing the würtzite structure of pristine ZnO up to Mn concentrations x≤0.05. The presence of a secondary phase, related to the solubility of Mn in ZnO is evident for higher Mn-doping concentrations. The negative value obtained for the Curie–Weiss temperature indicates that the interactions between the Mn ions are predominantly antiferromagnetic. Thus, no bulk ferromagnetism is evident in any of the studied samples.  相似文献   

18.
High‐resolution transmission electron microscopy was employed to investigate morphologies and catalyst‐free growth mechanism of ZnO/Mgx Zn1–x O ‘multi‐quantum well’ and ‘core‐shell’ nanorod heterostructures as well as ZnO nanorods. The one‐dimensional growth mechanism and the hexagonal faceting of ZnO nanorod were explained by the surface energy anisotropy. The morphology change by alloying with Mg was successfully explained by investigating the energy gain by adatom adsorption and the reduction in the surface energy anisotropy. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
We report the fabrication and characterization of highly responsive ZnMgO‐based ultraviolet (UV) photodetectors in the metal–semiconductor–metal (MSM) configuration for solar‐blind/visible‐blind optoelectronic application. MSM devices were fabricated from wurtzite Zn1–xMgx O/ZnO (x ~ 0.44) thin‐film heterostructures grown on sapphire (α‐Al2O3) substrates and w‐Zn1–xMgx O (x ~ 0.08), grown on nearly lattice‐matched lithium gallate (LiGaO2) substrates, both by radio‐frequency plasma‐assisted molecular beam epitaxy (PAMBE). Thin film properties were studied by AFM, XRD, and optical transmission spectra, while MSM device performance was analyzed by spectral photoresponse and current–voltage techniques. Under biased conditions, α‐Al2O3 grown devices exhibit peak responsivity of ~7.6 A/W at 280 nm while LiGaO2 grown samples demonstrate peak performance of ~119.3 A/W, albeit in the UV‐A regime (~324 nm). High photoconductive gains (76, 525) and spectral rejection ratios (~103, ~104) were obtained for devices grown on α‐Al2O3 and LiGaO2, respectively. Exemplary device performance was ascribed to high material quality and in the case of lattice‐matched LiGaO2 films, decreased photocarrier trapping probability, presumably due to low‐density of dislocation defects. To the best of our knowledge, these results represent the highest performing ZnO‐based photodetectors on LiGaO2 yet fabricated, and demonstrate both the feasibility and substantial enhancement of photodetector device performance via growth on lattice‐matched substrates. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

20.
Cu–Nb–O films with a thickness of ca. 150 nm were prepared on borosilicate glass substrates using CuNbO3 ceramic target at substrate temperature of 500 °C by pulsed laser deposition. The X‐ray diffraction patterns showed that the Cu–Nb–O films were amorphous or an aggregation of fine crystals. The post‐annealed film at 300 °C in N2 gas showed 80% transmission in visible light (band gap = 2.6 eV) and high p‐type conductivity of 21 S cm–1. The Cu–Nb–O film with a thickness of 100 nm, fabricated from the target with a composition of Cu/Nb = 0.9, showed the highest p‐type conductivity of 116 S cm–1. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号