首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An analysis is presented for the unsteady laminar flow of an incompressible Newtonian fluid in an annulus between two concentric spheres rotating about a common axis of symmetry. A solution of the Navier-Stokes equations is obtained by employing an iterative technique. The solution is valid for small values of Reynolds numbers and acceleration parameters of the spheres. In applying the results of this analysis to a rotationally accelerating sphere, a virtual moment of inertia is introduced to account for the local inertia of the fluid.  相似文献   

2.
Summary The paper deals with the study of the nature of secondary flow of aRivlin-Ericksen fluid, contained between two concentric spheres, which perform oscillations about a fixed diameter. The steady part of the secondary flow is discussed in detail in the following three cases (i) the outer sphere at rest, the inner oscillating, (ii) the two spheres oscillating with the same angular velocity in the same sense and (iii) the spheres oscillating with the same angular velocity in opposite sense. In a previous paper, a similar problem was discussed for theOldroyd fluids. We find that the secondary flow is strongly dependent on the common frequency of oscillation of the two spheres and on the rotational nature of the motion for the present investigation also. Certain contrasting features of interest between the secondary flow field of the two fluids are also noted.  相似文献   

3.
Permeability of the Fluid-Filled Inclusions in Porous Media   总被引:1,自引:0,他引:1  
In this article, we propose an approach to obtain the equivalent permeability of the fluid-filled inclusions embedded into a porous host in which a fluid flow obeys Darcy’s law. The approach consists in the comparison of the solutions for one-particle problem describing the flow inside the inclusion, firstly, by the Stokes equations and then by using Darcy’s law. The results obtained for spheres (3D) and circles (2D) demonstrate that the inclusion equivalent permeability is a function of its radius and, additionally, depends on the host permeability. Based on this definition of inclusion permeability and using effective medium method, we have calculated the effective permeability of the double-porosity medium composed of the permeable matrix (with small scale pores) and large scale secondary spherical pores.  相似文献   

4.
In this article we formulate and solve the problem of the influence of radiation forces (forces created by the radiation pressure) on two spheres in a viscous fluid during the transmission of an acoustic wave. On the basis of these forces we investigate the nature of the interaction between the spheres as determined by the mutual disturbance of the flow fields around them as a result of interference between the primary and secondary waves reflected from the spheres. A previously proposed [2] approach is used in the investigations. The radiation force acting on one of the spheres is filtered by averaging the convolution of the stress tensor in the fluid with the unit normal to the surface of the sphere over a time interval and over the surface of the sphere. The stresses in the fluid are represented, to within second-order quantities in the parameters of the wave field, in terms of the velocity potentials obtained from the solution of the linear problem of the diffraction of the primary wave by the free spheres. The diffraction problem is formulated and solved within the framework of the theory of linear viscoelastic solids [6]. The case of an ideal fluid has been studied previously [3–5, 7]. Radiation forces are one of the causes of the relative drift of solid particles situated in a fluid in an acoustic field.S. P. Timoshenko Institute of Mechanics, Academy of Sciences of Ukraine, Kiev. Translated from Prikladnaya Mekhanika, Vol. 30, No. 2, pp. 33–40, February, 1994.  相似文献   

5.
This paper presents a study of hydromagnetic Couette flow of an incompress- ible and electrically conducting fluid between two parallel rotating plates, one of which is oscillating in its own plane. A uniform transverse magnetic field is used, and the induced magnetic field is taken into account. The exact solution to the governing equations is obtained in a closed form. The solution to the problem in the case of vanishing and small finite magnetic Prandtl numbers is also derived from the general solution. The asymp- totic behavior of the solution for large values of the frequency parameter is analyzed to gain some physical insights into the flow pattern. Expressions for the shear stress at both the oscillatory and stationary plates due to primary and secondary flows and mass flow rate in the primary and secondary flow directions are also obtained. The results of the fluid velocity and the induced magnetic field are presented. The shear stresses on the plates due to the primary and secondary flows and the corresponding mass flow rates are presented in a tabular form.  相似文献   

6.
The research reported herein involved the study of the transient motion of a system consisting of an incompressible Newtonian fluid in an annulus between two concentric, rotating, rigid spheres. The primary purpose of the research was to study the use of a numerical method for analysing the transient motion that results from the interaction between the fluid in the annulus and the spheres which are started suddenly by the action of prescribed torques. The problems considered in this research included cases where: (a) one or both spheres rotate with prescribed constant angular velocities and (b) one sphere rotates due to the action of an applied constant or impulsive t?orque. In this research the coupled solid and fluid equations were solved numerically by employing the finite difference technique. With the approach adopted in this research, only the derivatives with respect to spatial variables were approximated with the use of the finite difference formulae. The steady state problem was also solved as a separate problem (for verification purposes), and the results were compared with those obtained from the solution of the transient problem. Newton's algorithm was employed to solve the algebraic equations which resulted from the steady state problem, and the Adams fourth-order predictor–corrector method was employed to solve the ordinary differential equations for the transient problem. Results were obtained for the streamfunction, circumferential function, angular velocity of the spheres and viscous torques acting on the spheres as a function of time for various values of the system dimensionless parameters.  相似文献   

7.
Tangential and radial velocity profiles were measured for the flow about a sphere rotating slowly in a Newtonian fluid, contained in a rectangular tank. Velocities were determined from enlarged streak photographs of aluminium particles moving in a collimated “sheet” of light, at several planes through the flow field. Similar velocity profiles were measured for the flow of a 1.50% Natrosol 250 H solution about two spheres of different diameters rotating in two different sized rectangular tanks. A set of velocity distributions were also measured for a sphere rotating in a 0.9% Natrosol 250 H solution. A dye tracer study of the flow about a sphere rotating in this liquid is presented as well. Both Natrosol solutions exhibited viscoelastic behaviour. The Newtonian fluid study was carried out at a Reynolds number of 1.2 and the viscoelastic fluid studies were within the Reynolds number range of 0.05–1.24.The zero shear viscosities of the Natrosol solutions were measured using the falling-sphere method. The non-Newtonian material parameters were obtained by fitting the theoretical curves to the measured velocity data. The values of the elastic and shear thinning parameters for the two liquids obtained in the different geometrical and dynamical situations are compared.  相似文献   

8.
The interaction among two spheres in tandem formation are studied for a Reynolds number of 300 using both steady and pulsating inflow conditions. The purpose is to further investigate the force characteristics as well as the shedding patterns of the two spheres as the separation distance is changed from 1.5 to 12 sphere diameters. The method used for the simulations is the volume of solid (VOS) method, an approach based on the volume of fluid (VOF) method. Comparisons with other computational methods have shown VOS to accurately resolve the flow field around solid spheres. The results show that the separation distance plays a significant role in changing the flow patterns and shedding frequencies at moderate separation distances, whereas effect on drag is observed even at a separation distance of 12 diameters.  相似文献   

9.
A numerical analysis technique and its results for viscous incompressible flows in the annulus between two concentric coaxial spheres generated by the rotation of the boundary spheres in the same or opposite directions are presented. It is shown that in the course of its development, the main flow passes through three characteristic stages which differ significantly from each other (qualitatively as well as quantitatively) with respect to meridional circulation and azimuthal flow. Depending on the fluid layer thickness, different stages of main flow development may precede the loss of stability; this determines the differences in the mechanisms of loss of stability of the main flow and in the nature of the secondary flows. The calculated results are compared with the experimental data. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 75–86, January–February, 1998.  相似文献   

10.
The dynamical behavior of two tethered rigid spheres in a supersonic flow is numerically investigated. The tethered lengths and radius ratios of the two spheres are different. The two spheres, which are centroid axially aligned initially, are held stationary first, then released, and subsequently let fly freely in a supersonic flow. The mean qualities of the system and the qualities of the bigger sphere are considered and compared with the situations without the tether. In the separation process, six types of motion caused by the spheres, tether, and fluid interaction are found. The results show that the mean x-velocity of the system changes in a different manner for different radius ratios, and the x-velocity of the bigger sphere is uniformly reduced but through different mechanisms.  相似文献   

11.
This paper presents results obtained by employing a modified Galerkin finite element method to analyse the steady state flow of a fluid contained between two concentric, rotating spheres. The spheres are assumed to be rigid and the cavity region between the spheres is filled with an incompressible, viscous, Newtonian fluid. The inner sphere is constrained to rotate about a vertical axis with a prescribed angular velocity, while the outer sphere is fixed. Results for the circumferential function Ω, streamfunction ψ, vorticity function ζ and inner boundary torque T1 are presented for Reynolds numbers Re ? 2000 and radius ratios 0.1 ? α ? 0.9. The method proved effective for obtaining results for a wide range of radius ratios (0.1 ? α ? 0.9) and Reynolds numbers (0 ? Re ? 2000). Previous investigators who employed the finite difference method experienced difficulties in obtaining results for cases with radius ratios α ? 0.2, except for small Reynolds numbers (Re ? 100). Results for Ω, Ψ, ζ and T1 obtained in this study for radius ratios 0.8 ≤ α ≤ 0.9 verified the development of Taylor vortices reported by other investigators. The research indicates that the method may be useful for analysing other non-linear fluid flow problems.  相似文献   

12.
In this research, experimental studies have been performed on the hydrodynamic interaction between two spheres by using particle image velocimetry and measuring the force between the spheres. To approach the system as a resistance problem, a servo-driving system was set-up by assembling a microstepping motor, a ball screw and a linear motion guide for the particle motion. Glycerin and a dilute solution of polyacrylamide in glycerin were used as Newtonian and non-Newtonian fluids, respectively. The polymer solution behaves like a Boger fluid when the concentration is 1000 ppm or less. The experimental results were compared with the asymptotic solution of Stokes equation. The result shows that fluid inertia and unsteadiness play important roles in the particle–particle interaction in the Newtonian fluid. This implies that the motion of two particles in suspension is not reversible even in the Newtonian fluid. In the non-Newtonian fluid, in addition to inertial effect, normal stress differences and viscoelasticity play important roles as expected. In dilute solutions weak shear thinning and the migration of polymer molecules in the inhomogeneous flow field also appear to affect the physics of the problem.  相似文献   

13.
The flow of a second-order fluid with a free surface between two coaxially mounted cylinders of finite length, the inner one of which is rotating, is being studied. In the case of slow flow and small shear rates the flow can be divided into a primary flow in the plane perpendicular to the axis of rotation and a secondary flow in the meridional plane. These flow components are numerically calculated and the results are compared with the analytical results for the semi-infinite cylinder approximation. The influence of the finiteness of the cylinders (end effect) upon the free surface deformation is analysed. The numerical results for the secondary flow are compared with results obtained by flow visualisation.  相似文献   

14.
The Stokes flow of a viscous incompressible fluid through a periodic array of impenetrable spheres with linear friction on the boundary is considered. A solution and an expression for the drag are obtained to terms of order c5/3 compared with unity (c is the volume concentration of the spheres). The proposed algorithm permits solution with any required degree of accuracy. The solution contains as limits the cases of perfect slip and no-slip on the surfaces of the spheres. In the problem with the no-slip condition, an asymptotically exact lower bound for the drag, which is valid for all values of the concentration c, is constructed.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 37–44, July–August, 1981.  相似文献   

15.
Drag forces of interacting particles suspended in power-law fluid flows were investigated in this study. The drag forces of interacting spheres were directly measured by using a micro-force measuring system. The tested particles include a pair of interacting spheres in tandem and individual spheres in a cubic matrix of multi-sphere in flows with the particle Reynolds number from 0.7 to 23. Aqueous carboxymethycellulose (CMC) solutions and glycerin solutions were used as the fluid media in which the interacting spheres were suspended. The range of power-law index varied from 0.6 to 1.0. In conjunction to the drag force measurements, the flow patterns and velocity fields of power-law flows over a pair of interacting spheres were also obtained from the laser assisted flow visualization and numerical simulation.

Both experimental and computational results suggest that, while the drag force of an isolated sphere depends on the power-index, the drag coefficient ratio of an interacting sphere is independent from the power-law index but strongly depends on the separation distance and the particle Reynolds number. Our study also shows that the drag force of a particle in an assemblage is strongly positions dependent, with a maximum difference up to 38%.  相似文献   


16.
Flow of a viscous fluid past a permeable sphere is investigated in the Stokes approximation. An example of such a flow is flow past a perforated or meshed spherical surface. The elements of the sphere contain rigid impermeable sections and openings through which the fluid can flow. The interaction of the sphere with the flow is described by two drag coefficients, which established the connection between the flow velocity of the fluid at the sphere and the stress tensor on it. The dependence of the flow pattern and also the drag and flow rate of the fluid on these coefficients is investigated. In special cases, the obtained solution describes flow past solid and liquid spheres.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 165–167, September–October, 1982.  相似文献   

17.
In this paper, the squeeze flow between two rigid spheres with a bi-viscosity fluid is examined. Based on lubrication theory, the squeeze force is calculated by deriving the pressure and velocity expressions. The results of the normal squeeze force are discussed, and fitting functions of the squeeze and correction coefficients are given. The squeeze force between the rigid spheres increases linearly or logarithmically with the velocity when most or part of the boundary fluid reaches the yield state, respectively. Furthermore, the slip correction coefficient decreases with the increase in the velocity. The investigation may contribute to the further study of bi-viscosity fluids between rigid spheres with wall slip.  相似文献   

18.
Interaction between two spheres with an interstitial fluid is crucial in discrete element modeling for simulating the behaviors of ‘wet’ particulate materials. The normal viscous force of squeeze flow between two arbitrary rigid spheres with an interstitial Herschel–Bulkley fluid was studied on the basis of Reynolds’ lubrication theory, resulting in analytical integral expressions of pressure distribution and the viscous force between the two spheres. According to the variation of shear stress, the fluid was divided into yielding and unyielding regions, followed by a discussion on the thickness of the two regions. The result of this paper could be reduced to either the power-law fluid or the Bingham fluid case.  相似文献   

19.
This study presents an analysis of the axisymmetric flow of a non-Newtonian fluid over a radially stretching sheet. The momentum equations for two-dimensional flow are first modeled for Sisko fluid constitutive model, which is a combination of power-law and Newtonian fluids. The general momentum equations are then simplified by invoking the boundary layer analysis. Then a non-linear ordinary differential equation governing the axisymmetric boundary layer flow of Sisko fluid over a radially stretching sheet is obtained by introducing new suitable similarity transformations. The resulting non-linear ordinary differential equation is solved analytically via the homotopy analysis method (HAM). Closed form exact solution is then also obtained for the cases n=0 and 1. Analytical results are presented for the velocity profiles for some values of governing parameters such as power-law index, material parameter and stretching parameter. In addition, the local skin friction coefficient for several sets of the values of physical parameter is tabulated and analyzed. It is shown that the results presented in this study for the axisymmetric flow over a radially non-linear stretching sheet of Sisko fluid are quite general so that the corresponding results for the Newtonian fluid and the power-law fluid can be obtained as two limiting cases.  相似文献   

20.
Davis et al. (1976) have shown that if two solid spheres move together in an axisymmetric Stokes flow, then provided they are sufficiently close, a body of fluid becomes trapped between the spheres. Here it is shown how the small eddy motions induced in this trapped fluid are significantly disrupted when one sphere moves relative to the other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号