首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
浮力对混合对流流动及换热特性的影响   总被引:1,自引:0,他引:1  
用热线和冷线相结合的技术测量垂直圆管内逆混合对流流体的平均速度、 温度以及它们的脉动. 较详细地研究了浮力对逆混合对流的流动特性和传热特性的影响. 评 估了实验中采用的冷线测量温度补偿速度探头温度敏感的影响. 逆混合对流的传热结果用无 量纲参数Ω (Ω= Grd / Red2 )来表示,其中,基于管道直 径的雷诺数Red变化范围为900~18000, 浮力参数Ω变化范围为 0.004899~0.5047. 研究结果表明,浮力对逆混合对流的换热有强化作用. 随着葛拉晓夫数Grd的增加,温度脉动,流向雷诺正应力和流向温度通量增 大,并且在靠近壁面的流体区域尤其明显. 热线与冷线相结合的技术适合于研究非绝热的流 动测量,可以用于研究浮力对流动和换热特性的影响.  相似文献   

2.
A new pulsed wire probe for making velocity and turbulence measurements in the near wall region of incompressible, isothermal boundary layers of all kinds is described. Results of careful calibrations of the probe response in both laminar and turbulent flows are presented, with particular emphasis on the effects of diffusion in the very near wall region. Analytic results for the motion and distortion of a heat puff in linear shear flow near a wall are developed and these are shown to validate a very simple approximate theory that accounts for the diffusional effects. It is demonstrated that correction procedures based on the theory can be successfully implemented. Examples of the use of the probe in highly turbulent, separated flows, as well as more standard boundary layers, are given and its response near the wall is contrasted with that of the corresponding (parallel wire) probe used for surface shear stress measurements.  相似文献   

3.
A Lyman-alpha hygrometer with a reduced sampling volume has been developed in order to measure small-scale, fast fluctuations of humidity in laboratory. It is combined with an X-wire anemometer probe to measure the local value of the turbulent flux or with a resistant wire temperature probe to measure humidity-temperature mixed statistics. In order to determine the influence of the flow distortion by the probe itself on these measurements, the structure of the flow is investigated experimentally both inside the hygrometer sampling volume and at the location of the velocity or temperature probe. This investigation includes flow visualizations, measurements with a single hot wire in a calibration tunnel and measurements with a X-wire probe and a temperature resistance wire probe in a large turbulent boundary layer.  相似文献   

4.
This paper proposes a combined method for two-dimensional temperature and velocity measurements in liquid and gas flows using temperature-sensitive particles (TSPs), a pulsed ultraviolet laser, and a high-speed camera. TSPs respond to temperature changes in the flow and can also serve as tracers for the velocity field. The luminescence from the TSPs was recorded at 15,000 frames per second as sequential images for a lifetime-based temperature analysis. These images were also used for the particle image velocimetry calculations. The temperature field was estimated using several images, based on the lifetime method. The decay curves for various temperature conditions fit well to exponential functions, and from these the decay constants at each temperature were obtained. The proposed technique was applied to measure the temperature and velocity fields in natural convection driven by a Marangoni force and buoyancy in a rectangular tank. The accuracy of the temperature measurement of the proposed technique was ±0.35–0.40°C.  相似文献   

5.
A pulsed-wire-anemometer probe which is capable of velocity measurements in the near-wall regions of turbulent separated flows is described. Measurements made with the probe in an attached flow are shown to compare favorably with those made using a hot-wire anemometer. Measurements made in a separated flow are also presented.  相似文献   

6.
This paper deals with a simple and reliable technique for simultaneous measurement of velocity and temperature in high-temperature turbulent flows, including combustion. The technique is based on the combination of laser Doppler velocimetry and a digitally compensated fine-wire thermocouple. For temperature measurement, a two-thermocouple probe with a fine cold wire [Tagawa et al. (1998) Rev Sci Instrum 69: 3370–3378] is used, which enables in situ measurement of thermocouple time constants and accurate compensation of the thermocouple response. When tested in a turbulent wake behind a heated cylinder, the technique proves to be highly reliable and effective for investigating heat transport processes in various non-isothermal turbulent flows. Received: 24 June 1999/Accepted: 10 March 2000  相似文献   

7.
Swirling flows are often employed in gas turbine combustion systems and high intensity industrial furnaces. A detailed analysis of the turbulence in the flow is necessary to achieve optimum combustion conditions. In this paper a method has been described to measure the turbulence levels in three directions using a hot wire anemometer. So far there is no established method available for measurement of turbulence in swirling and recirculating flows. The present method, it is hoped, will bridge the gap. The merit of the present method is the use of a single-wire probe rather than the X-probe. The method has been used for the measurement of turbulence levels in swirling recirculating flows generated by vane swirlers. From the measured turbulence levels, the kinetic energy of turbulence has been calculated and the results are compared with a well-established numerical prediction method. Mean velocity measurements have also been made using a 3-hole Pitot probe. The agreement between the measured and predicted values is quite satisfactory.  相似文献   

8.
This work describes applications of filtered Rayleigh scattering to measure thermodynamic properties in compressible unseeded flows and thermal fields. Methodologies for measuring single and multiple properties in four flows are demonstrated including methods to calibrate the system parameters. Temperature, pressure, and velocity were measured simultaneously in a free jet and a laser-induced energy deposition experiment. Additionally, single-property temperature measurements were acquired in the energy deposition and a natural convection experiment. Modifications to the technique are discussed to simplify calibration and avoid double-valued solutions when performing temperature measurements. The uncertainty of the technique is also discussed and evaluated.  相似文献   

9.
Several techniques associated with the use of hot wire anemometry in compressible turbulence measurements are described and tested in shock tube flows. These techniques include 1. in-situ calibration of the hot-wire probe by firing several shock waves of different strengths in the shock tube; 2. on-line analog frequency compensation or off-line digital compensation of the temperature-wire; 3. simultaneous acquisition of time-dependent flow velocity and temperature of the flow without invoking Morkovin's hypothesis of strong Reynolds analogy. The techniques were tested in two different shock tube facilities, where a grid generated turbulent flow interacting with a moving shock was set up.The financial support provided by National Science Foundation and NASA is greatly acknowledged.  相似文献   

10.
We have developed a probe-system for simultaneous measurement of three velocity components and pressure in turbulent flows. A miniature total pressure probe is placed adjacent to the sensors of a triple hot-film probe in order to achieve the spatial resolution which is equivalent to that of the triple hot-film probe itself. The instantaneous static pressure is calculated from measured velocity and total pressure by means of a newly developed processing method based on the Bernoulli equation for unsteady flows. The measurements were undertaken in a turbulent wing-tip vortex flow. The look-up table method is employed for the calibration of the hot-film probe so accurate velocity data could be obtained over a wide range of the flow-attack angles. It is also demonstrated that the present probe-system is capable of measuring fluctuations in both velocity and pressure in the 20?C650 Hz frequency range. The distribution of the fluctuating pressure obtained by this indirect method is in good agreement with the results from direct measurements of static pressure, demonstrating the promising performance of the present method. Furthermore, an improvement in the ability to make measurements of the velocity?Cpressure correlation across the wing-tip vortex is achieved. This improvement is possible because the effects of lateral velocity components are properly taken into account in the present formulation. The investigation regarding the transport equation budget for turbulent kinetic energy shows an anomalous structure of turbulence in this flow, mainly due to the meandering of the vortex, and the measurement of pressure diffusion is found to play an important role in the characterization of this kind of flow.  相似文献   

11.
12.
This paper deals with a theoretical (numerical) analysis of the effects that blowing/injection and suction have on the steady mixed convection or combined forced and free convection boundary layer flows over a vertical slender cylinder with a mainstream velocity and a wall surface temperature proportional to the axial distance along the surface of the cylinder. Both cases of buoyancy forces aid and oppose the development of the boundary layer are considered. Similarity equations are derived and their solutions are dependent upon the mixed convection parameter, the non-dimensional transpiration parameter and the curvature parameter, as well as of the Prandtl number. Dual solutions for the previously studied mixed convection boundary layer flows over an impermeable surface of the cylinder are shown to exist also in the present problem for aiding and opposing flow situations.  相似文献   

13.
The problem of determination of the turbulence onset in natural convection on heated inclined plates in an air environment has been experimentally revisited. The transition has been detected by using hot wire velocity measurements. The onset of turbulence has been considered to take place where velocity fluctuations (measured through turbulence intensity) start to grow. Experiments have shown that the onset depends not only on the Grashof number defined in terms of the temperature difference between the heated plate and the surrounding air. A correlation between dimensionless Grashof and Reynolds numbers has been obtained, fitting quite well the experimental data.  相似文献   

14.
This paper investigates mixed free and forced convection of non-Newtonian fluids from a vertical isothermal plate embedded in a homogenous porous medium. A mathematical model is developed based on the modified Darcy's law and boundary-layer approximations, and the exact similarity solution is obtained as well as an integral solution. These two solutions agree within 3% for aiding flows and 10% for opposing flows. It is found that, non-Newtonian characteristics of fluids have appreciable influences on velocity profiles, temperature distributions and flow regimes.  相似文献   

15.
16.
Vorticity measurements, which are scarce at the present time, can provide valuable dynamical information, particularly in unsteady and separated flows. Advances in laser Doppler anemometry and optical techniques have furnished the opportunity for the development of a non-intrusive vorticity probe with very fine spatial and temporal resolutions. The laser vorticity probe (LAVOR), which makes use of minimal laser beams and optical components, is capable of measuring velocity gradients with a separation distances as small as 0.3 mm. Velocity gradients are measured using two points on the same probe volume. However, unlike other techniques, the LAVOR also provides the instantaneous velocity at each point in the probe volume, and so provides additional dynamical information. The LAVOR probe was used in a fully turbulent two-dimensional boundary layer, and the data obtained are compared with the existing hot-wire vorticity data obtained in the same wind tunnel facility and with data obtained in other facilities. The spatial resolution is of the order of three Kolmogorov microscale units. Published online: 19 October 2002  相似文献   

17.
 To develop a quantitative understanding of unsteady and interacting turbomachine flow fields, it is necessary to quantify the instantaneous efficiency of high speed turbomachines. This requires the measurement of both the unsteady velocity and total temperature variation in the exit flow of a high speed rotor. In this paper, techniques to utilize a single slant-film anemometer to measure unsteady total temperature are developed and evaluated. Then a series of preliminary experiments are performed in a high speed axial fan facility to quantify the instantaneous rotor efficiency. This is accomplished by utilizing these single slant-film methods to measure the total temperature in the rotor wakes. Results show that measurements at multiple overheats and several probe orientations are required. The simplest method proves to be useful for determining parameters used in other methods. An analysis based on King’s law gives good results even when measurements are outside the calibration range. Within the calibration range, a polynomial representation of the wire response to mass flux and total temperature yields good total temperature fluctuation results. A model analysis technique is also assessed. Received: 13 November 1997/Accepted: 16 February 1998  相似文献   

18.
A regular perturbation analysis is presented for three laminar natural convection flows in micropolar fluids in liquids with temperature dependent viscosity: a freely-rising plane plume, the flow above a horizontal line source on an adiabatic surface (a plane wall plume) and the flow adjacent to a vertical uniform flux surface. While these flows have well-known power-low similarity solutions when the fluid viscosity is taken to be constant, they are non-similar when the viscosity is considered to a function of temperature. A single similar flow, that adjacent to a vertical isothermal surface, is also analysed for comparison in order to estimate the extent of validity of perturbation analysis. The formulation used here provides a unified treatment of variable viscosity effects on those four flows. Computed first-order perturbation quantities are presented for all four flows. Numerical results for velocity, angular velocity and thermal functions has been shown graphically or tabulated for different values of micropolar parameters. Received on 20 October 1997  相似文献   

19.
Magnetic resonance imaging (MRI) measurements in liquid flows provide highly detailed 3D mean velocity and concentration data in complex turbulent mixing flow applications. The scalar transport analogy is applied to infer the mean temperature distribution in high speed gas flows directly from the MRI concentration measurements in liquid. Compressibility effects on turbulent mixing are known to be weak for simple flows at high subsonic Mach number, and it was not known if this would hold in more complex flows characteristic of practical applications. Furthermore, the MRI measurements are often done at lower Reynolds number than the compressible application, although both are generally done in fully turbulent flows. The hypothesis is that the conclusions from MRI measurements performed in water are transferable to high subsonic Mach number applications. The present experiment is designed to compare stagnation temperature measurements in high speed airflow (M = 0.7) to concentration measurements in an identical water flow apparatus. The flow configuration was a low aspect ratio wall jet with a thick splitter plate producing a 3D complex downstream flow mixing the wall-jet fluid with the mainstream flow. The three-dimensional velocity field is documented using magnetic resonance velocimetry in the water experiment, and the mixing is quantified by measuring the mean concentration distribution of wall-jet fluid marked with dissolved copper sulfate. The airflow experiments are operated with a temperature difference between the main stream and the wall jet. Profiles of the stagnation temperature are measured with a shielded thermocouple probe. The results show excellent agreement between normalized temperature and concentration profiles after correction of the temperature measurements for the effects of energy separation. The agreement is within 1 % near the edges of the mixing layer, which suggests that the mixing characteristics of the large scale turbulence structures are the same in the two flows.  相似文献   

20.
The hydrodynamic and heat transfer characteristics of a porous medium consisting of 20 wire screen meshes are examined theoretically and experimentally. The hydrodynamic experiments are conducted for the range of Reynolds number based on mean velocity and wire diameter from 1.5 to 12. The Ergun's constants and thermal dispersion coefficients are calculated in this range. Nusselt number variation is determined in both thermally developing and fully developed flows by the help of forced convection heat transfer experiments conducted for the uniform heat flux boundary condition. Correlation functions of Nusselt number in the range of fully developed and thermally developing, and of thermal entrance length are obtained from experimental data. Solutions of momentum and energy equations simulating the experimental model are obtained numerically with variable porosity and the anticipated thermal dispersion coefficients. The thermal dispersion coefficients well-adjusted to the experimental data are determined by numerical solution of the energy equation. Received on 22 November 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号